
Technical Report CS10-01

An Empirical Evaluation of Methods
for Improving Efficiency in Xen

Virtual Machine CPU Scheduling

James Devine

Submitted to the Faculty of
The Department of Computer Science

Project Director: Dr. Robert D. Cupper
Second Reader: Dr. Gregory M. Kapfhammer

Allegheny College
2010

I hereby recognize and pledge to fulfill my
responsibilities as defined in the Honor Code, and
to maintain the integrity of both myself and the

college community as a whole.

James Devine

Copyright c© 2010

James Devine

All rights reserved

ii

JAMES DEVINE. An Empirical Evaluation of Methods for Improving
Efficiency in Xen Virtual Machine CPU Scheduling.

(Under the direction of Dr. Robert D. Cupper.)

ABSTRACT

Virtualization is a technique for running multiple operating systems on a single

host machine. This is done though a lightweight operating system called a hypervisor

that allocates resources to each guest operating system. Xen is one such hypervisor

that is both open source and free. The Xen hypervisor offers two different virtual

machine scheduling algorithms, the credit scheduler (which is the default) and the

Simple Earliest Deadline First (sEDF) scheduler. Virtual machine performance is

sensitive to the hypervisor’s scheduling of CPU resources. This research examines

various configurations of the credit and sEDF schedulers for specific work loads by

constructing three case study applications for experimentally determining and evalu-

ating the performance of each of the scheduling algorithm configurations for each of

the three workloads. The results of the study suggest that the default CPU scheduling

algorithm in the default configuration does not provide any performance guarantees.

Further, various configurations of the sEDF CPU scheduler consistently outperformed

the credit scheduler for some of the case study applications.

iii

Acknowledgments

First and foremost I would like to thank my first reader, Professor Cupper. He has

severed as colleague, friend, and mentor throughout the entire process of this work.

He was always there to provided constructive criticism and ultimately has a large

share in the success of this work.

I would also like the thank The MITRE Corporation for providing a challenging

and rewarding internship experience over the last two years. Through the course

of the internship I was able to firmly plant my interest in virtualization and gain

invaluable hands on experience that was crucial to the success of this work. The list

of specific individuals at MITRE who have help guide me include: Ed Shrum, Dave

Polete, Paul Barr, and David Kaplan.

iv

Contents

Acknowledgments iv

List of Tables x

List of Figures xiii

1 Overview 1

1.1 Virtualization . 1

1.1.1 Definition . 1

1.1.2 Motivation . 2

1.1.3 History . 4

1.1.4 The Xen Open Source Hypervisor 5

1.2 CPU Scheduling . 6

1.2.1 Measuring Performance . 7

1.2.2 Xen CPU Scheduling Algorithms 8

1.2.2.1 The sEDF Scheduler 9

1.2.2.2 The Credit Scheduler 9

1.2.3 Scheduling Concerns . 10

1.3 Thesis Statement . 11

1.4 Contributions of Work . 11

1.5 Looking Ahead . 12

v

2 Related Work 14

2.1 Xen and the Art of Virtualization . 14

2.2 Xen CPU Scheduling Research . 15

3 Virtual Machine Architecture 17

3.1 Hardware . 17

3.2 Workloads . 17

3.2.1 Web Application . 18

3.2.2 VPS Application . 19

3.2.3 Windows Domain . 20

3.2.3.1 Active Directory . 21

3.2.3.2 Exchange . 21

3.2.3.3 SharePoint . 22

3.2.3.4 MSSQL . 22

3.3 Test Machine . 22

3.4 Network Overview . 22

4 Experiment Design 25

4.1 Web Application Workload Experiment 25

4.1.1 Application Design . 26

4.1.2 Running the Experiment . 27

4.2 VPS Workload Experiment . 27

4.2.1 Running the Experiment . 28

4.3 Windows Domain Workload Experiment 28

4.3.1 Running the Experiments . 29

4.4 Results Analysis . 30

4.4.1 JMeter . 31

vi

4.4.2 LoadGen . 32

4.4.3 Xenmon . 33

5 The Results: Analysis and Conclusions 34

5.1 Introduction . 34

5.2 Web Application Results . 36

5.3 VPS Results . 46

5.4 Windows Domain Results . 46

5.4.1 Exchange Results . 46

5.4.2 MOSS Results . 46

5.5 A Review of Claims and Contributions 56

5.6 Threats to Validity . 57

5.7 Conclusion . 57

6 Future Work 59

A Xen Commands 62

A.1 Xen Installation . 62

A.2 Creating a VM . 63

A.3 Cloning a VM . 63

A.4 Increase the Number of Loopback Devices 63

A.5 Set the Xen CPU Scheduler Type . 64

A.6 Determining the Scheduler Configuration 64

A.7 Xentop . 64

A.8 Viewing the Running Virtual Machines 65

B Tools 67

B.1 JMeter . 67

vii

B.2 LoadGen . 67

B.3 Pageant . 68

B.4 Plink . 68

B.5 Ubuntu . 68

B.6 virt-manager . 69

B.7 Xenmon . 69

B.8 Xen . 69

C Source Code 70

C.1 Test Configuration Files . 70

C.1.1 Web Application JMeter Configuration File 70

C.2 Test Scripts . 74

C.2.1 Web Application sEDF Tests Powershell Script 74

C.2.2 Web Application Credit Tests Powershell Script 77

C.3 Web Application Source Code . 80

C.3.1 Main Website . 80

C.3.2 SQL Setup Script . 85

C.3.3 Powershell Script to Execute the SQL Setup 88

C.3.4 SQL Teardown Script . 89

C.3.5 Powershell Script to Execute the SQL Teardown 90

C.3.6 SQL Configuration File . 90

C.4 JMeter Log File Reduction . 91

C.4.1 JMeter Log File to CSV Converter 91

C.4.2 Script to Run the JMeter Converter 94

C.5 R Code . 95

C.5.1 Xenmon Output Processing 95

viii

Bibliography 97

ix

List of Tables

3.1 Virtual System Specifications. An overview of the testbed system spec-

ifications. 18

3.2 Test Computer Specifications. An overview of the test computer spec-

ifications. 23

4.1 Web Application sEDF Scheduler Configurations. An overview of the

slice and period used for the sEDF scheduler. The value in parenthesis

indicates the name used to refer to that scheduler configuration. . . . 26

4.2 Windows Domain sEDF Scheduler Configurations. An overview of the

slice and period used for the sEDF scheduler. 30

4.3 JMeter Log Entry Parameter. A description of each of the JMeter

parameters captured. 32

5.1 Web Application Throughput Results. An overview of the web appli-

cation throughput results. 39

5.2 Web Application Throughput Standard Deviation. An overview of

the standard deviation of the throughput values obtained in the web

application tests. 39

5.3 Web Application Throughput 95% Confidence Intervals. An overview

of the 95% confidence interval of the results obtained in the web ap-

plication tests. Each value indicated in the table is a ± value from the

mean. 42

x

5.4 Web Application Response Time Results. An overview of the web

application response time results. 42

5.5 Web Application Response Time Standard Deviation. An overview

of the standard deviation of the response times obtained in the web

application tests. 43

5.6 Web Application Response Time 95% Confidence Intervals. An overview

of the 95% confidence interval of the response times obtained in the

web application tests. Each value indicated in the table is a ± value

from the mean. 43

5.7 Web Application Apache VM CPU Time. An summary of the per-

centage of total runtime that the Apache VM spent in the blocked,

running, and waiting states. 44

5.8 Web Application NFS VM CPU Time. An summary of the percentage

of total runtime that the NFS VM spent in the blocked, running, and

waiting states. 44

5.9 Web Application MySQL VM CPU Time. An summary of the per-

centage of total runtime that the MySQL VM spent in the blocked,

running, and waiting states. 45

5.10 Web Application Domain0 CPU Time. An summary of the percent-

age of total runtime that Domain0 spent in the blocked, running, and

waiting states. 45

5.11 MOSS Throughput Results. An overview of the MOSS throughput

results. 49

5.12 MOSS Throughput Standard Deviation. An overview of the standard

deviation of the throughput values obtained in the MOSS tests. . . . 52

xi

5.13 MOSS Throughput 95% Confidence Intervals. An overview of the 95%

confidence interval of the results obtained in the MOSS tests. Each

value indicated in the table is a ± value from the mean. 52

5.14 MOSS Response Time Results. An overview of the MOSS response

time results. 53

5.15 MOSS Response Time Standard Deviation. An overview of the stan-

dard deviation of the response times obtained in the MOSS tests. . . 53

5.16 MOSS Response Time 95% Confidence Intervals. An overview of the

95% confidence interval of the response times obtained in the MOSS

tests. Each value indicated in the table is a ± value from the mean. . 54

5.17 MOSS VM CPU Time. An summary of the percentage of total runtime

that the MOSS VM spent in the blocked, running, and waiting states. 54

5.18 MOSS MSSQL VM CPU Time. An summary of the percentage of

total runtime that the MSSQL VM spent in the blocked, running, and

waiting states. 55

5.19 MOSS Domain0 CPU Time. An summary of the percentage of total

runtime that Domain0 spent in the blocked, running, and waiting states. 55

xii

List of Figures

1.1 An Abstract View of The Xen Architecture. The Xen Hypervisor is

the underlying software that directly accesses the CPU and memory.

Domain0 is a special virtual machine that has direct access to the

physical I/O resources of the host. Two guest virtual machines are

shown to the right of Domain0, one paravirtualized (PV) and one fully

virtualized (HVM) [10]. 6

1.2 The States of a Process. A flowchart of the three possible states of a

process: running, ready, and blocked. 7

3.1 Web Application Workload Architecture. A high-level view of the web

application workload. 19

3.2 VPS Hosting Workload Architecture. A high-level view of the VPS

application workload. 20

3.3 Windows Domain Workload Architecture. A high-level view of the

windows domain application workload. 21

3.4 Network Architecture. An overview of the network architecture created

for experimentation. 24

4.1 Pseudo Code for the Web Application. A basic outline of the web

application design. 27

xiii

4.2 Pseudo Code for the Web Application Workload Testing Script. A

basic outline of the script used to run the web application workload

experiment. 27

4.3 Pseudo Code for the VPS Workload Testing Script. A basic outline of

the script used to run the VPS workload experiment. 28

4.4 Pseudo Code for the Windows Workload Testing Script. A basic out-

line of the Windows PowerShell scripts that were used for the Window

domain workload experiments. 30

4.5 JMeter Log Entry. A sample of a JMeter log entry. An explanation of

each field is provided in Table 4.3. 31

5.1 Web Application Throughput Graph. A graphical depiction of the

average throughput for each scheduler configuration under each user

load with 95% confidence intervals. 40

5.2 Web Application Response Time Graph. A graphical depiction of the

average response time for each scheduler configuration under each user

load with 95% confidence intervals. 41

5.3 MOSS Throughput Graph. A graphical depiction of the average through-

put for each scheduler configuration under each user load with 95%

confidence intervals. 50

5.4 MOSS Response Time Graph. A graphical depiction of the average

response time for each scheduler configuration under each user load

with 95% confidence intervals. 51

A.1 sched-credit Command. An example of the xm sched-credit

command output. 65

A.2 xentop Command. An example of the xentop command output. . 65

A.3 xm list Command. An example of the xm list command output. 66

xiv

Chapter 1

Overview

“...performance almost always matters. And I absolutely detest the fact that

people so often dismiss performance concerns so readily”

—Linus Torvalds

This chapter describes virtualization and gives a historical background to provide

perspective. After establishing the background, a motivation for the use of virtual-

ization is presented followed by the thesis statement.

1.1 Virtualization

This section gives a basic overview of virtualization and its history. It also provides

a motivation for the use of virtualization and introduces a particular virtualization

system, the Xen hypervisor.

1.1.1 Definition

Virtualization is a term that means many things to many people. In general it refers

to the process of abstracting a resource. In terms of operating systems, virtualization

is referred to as software technique that allows for multiple operating systems to

be run concurrently on a single computer. Hardware resources are abstracted by a

lightweight operating system referred to as a hypervisor. The term hypervisor is often

used interchangeably with the term virtual machine monitor (VMM). The lightweight

operating system has direct access to the physical resources and allocates them to

some number of virtual operating systems, called virtual machines (VMs), running

“on top” of the hypervisor. Through the use of operating system virtualization, many

operating systems of the same or differing types, e.g. Linux and Windows, can be

run concurrently using the same physical hardware.

The concept of virtualization arose in the 1970’s with the advent of the IBM 370

operating system. Within the last five years virtualization has become increasingly

popular due to increasing hardware speed coupled with decreasing prices. This has

led to the observation that, on average, computers are operating at just 10% to 20%

hardware utilization.

1.1.2 Motivation

Modern central processing units (CPUs) have become increasingly powerful in recent

years. Moore’s Law, which states that the number of transistors on a chip will double

every two years, has continued to hold since Moore first stated it in 1965 [4]. Given

this trend, CPU manufactures have moved away from the strategy of increasing the

clock speed of processors to adding more and more processors (referred to as cores)

to single chips. This trend has extended to even the low-end workstation processor

line to the point that today it is hard to find CPUs being manufactured with less

than two cores. In many cases software applications do not take full advantage of the

processing power of a single core, let alone multiple cores, which can lead to a large

degree of unused CPU resources.

The trend of having unused resources is a concern to businesses running multiple

2

servers. If eight servers are running at 10% average utilization, then they could, theo-

retically, be consolidated to a single server with an 80% utilization plus the overhead

of the hypervisor. In the case of the Xen hypervisor, this overhead is approximately

3% [11]. The motivation for server consolidation has caused a rapid increase in the

use of virtualization by businesses and other institutions that have the need to main-

tain many servers. In addition to a reduced hardware acquisition cost, there are

cost savings in the form of reduced energy, cooling, infrastructure, and maintenance.

Fewer servers means less servers to power and cool. The use of virtual networking,

providing network connectivity via software instead of hardware, allows for further

cost savings by reducing the amount of physical networking hardware.

There are several other benefits to virtualization including easier reallocation of

resources, faster provisioning of new systems, and higher availability. Virtual ma-

chines can be provisioned much more quickly than a typical server since the hardware

is already in place, which just leaves the task of installing an operating system. The

installation of an operating system itself can be eliminated though the use of tem-

plate virtual machines from which a fully function operating system can be deployed

quickly. In addition, when a virtual machine needs additional resources, a hardware

upgrade is not required. A virtual machine can simply be allocated more CPU and

memory resources though adjustment of a configuration file. Further, flexibility is

augmented though mechanisms like live migration which allows a running virtual

machine to be migrated between virtual servers in a matter of seconds without the

need to power down. Live migration can be automated to allow for load balancing

across virtual servers in a cluster. It can also facilitate high availability by detecting

a failing host server and migrating VMs to a healthy server.

3

However, there is a price for all these benefits that virtualization offers. Virtual

machines do not have direct access to hardware resources like a standalone system

does. The hypervisor must therefore contend with the complex task of scheduling

access to each physical resource (disk, network, memory, and CPU) due to the in-

ability of many devices to support concurrent operations. For example, a CPU can

only execute one instruction per core in any given clock cycle. This fact is further

complicated because many of the resources are scheduled by each individual VM’s

operating system. In context of the CPU, a virtual machine cannot run any processes

until it has access to a CPU. A virtual machine will not have access to the CPU until

the hypervisor’s CPU scheduler has moved the virtual machine from the wait queue

to a running state. Once a virtual machine is running, it can run processes that are

in the wait queue of the virtual machine’s CPU scheduler.

1.1.3 History

Operating system virtualization has existed for quite some time. IBM’s VM/370

provided the capacity to concurrently run multiple operating systems in 1972 [6].

Virtualization has remained a topic of research since that time. The main restraint

was that the hardware of the time did not have sufficient excess capacity to support

the full virtualization of operating systems. Processors were slow and the only way

to run truly parallel operations was to use multiple CPUs in a machine. Memory was

also prohibitive expensive. Aside from costs, hypervisor technology was in its infancy.

This remained the case for many years until operating system virtualization became

more technologically and financially viable.

VMware was one of the first companies to start offering a hypervisor for com-

modity hardware in 1999 with their release of VMware Workstation [14]. The Xen

4

open source hypervisor project followed several years later, beginning in 2003 [1].

The recent increasing use of virtualization has prompted companies like Citrix and

Microsoft to release their own hypervisors, XenServer (based on Xen) and HyperV,

respectively, to compete with VMware.

1.1.4 The Xen Open Source Hypervisor

Xen is an open source hypervisor that was first released in 2003 [1]. Initially, the hy-

pervisor only supported paravirtualization which restricted Xen to supporting only

virtual machines with a modified version of the host Linux kernel. This limited Xen to

running a limited set of operating systems. Eventually, support for full virtualization

was included which allowed Xen to support running virtual machines with non-Linux

operating systems, such as those offered by Microsoft and Sun [10].

The Xen architecture, depicted in Figure 1.1, is different from that of Microsoft

and VMware in that I/O is not handled by the hypervisor. The Xen hypervisor is

primarily responsible for allocating the CPU and memory and has direct access to

the physical hardware. All disk and network I/O is handled though a special virtual

machine referred to as Domain0 (virtual machines are referred to as domains in Xen).

Domain0 is the only virtual machine that has direct access to physical I/O hardware

resources. All of the other virtual machines access disk, network, universal serial bus

(USB) devices, and all other peripherals though Domain0.

The Xen hypervisor was chosen for this work due to its open source nature. Xen

is, in fact, the only x86 open source hypervisor. The Xen hypervisor is also quite

unique in that it has the ability to change the CPU scheduling algorithm with the

addition of a boot parameter. This functionality is discussed in the next section.

5

Figure 1.1: An Abstract View of The Xen Architecture. The Xen Hypervisor is the
underlying software that directly accesses the CPU and memory. Domain0 is a special
virtual machine that has direct access to the physical I/O resources of the host. Two
guest virtual machines are shown to the right of Domain0, one paravirtualized (PV)
and one fully virtualized (HVM) [10].

1.2 CPU Scheduling

One of the largest concerns with virtualization is resource allocation. While there may

be the appearance of ample idle resources in a physical machine, improper scheduling

of access to resources can cause problems. Modern operating systems utilize time-

sharing to allow for processes to run concurrently (or appear to run concurrently in

the case of a machine with only one CPU). This time sharing is largely facilitated by

a CPU scheduler that must deal with the fact that at any given time only one process

per CPU core can be running. CPU scheduling is a very complicated process and is

paramount to the efficient functioning of an operating system.

Regardless of the CPU scheduling algorithms that an operating system uses, there

are three basic states that a process (a term used to describe a program in execution)

many be in: running, ready, or blocked [12]. A process that is running has access to

CPU resources. A process that is ready is waiting for access to CPU resources, but

cannot access a CPU because another process is running. A process that is blocked

6

Figure 1.2: The States of a Process. A flowchart of the three possible states of a
process: running, ready, and blocked.

is waiting for some external event, such as I/O, to occur. The states that a process

can be in are depicted in Figure 1.2. These three states account for the total time

that a process is in execution.

1.2.1 Measuring Performance

The performance of a CPU scheduling algorithm can be assessed in terms of through-

put and/or response time. An efficient CPU scheduling algorithm has a low a response

time with a high level of throughput.

Throughput is generally expressed as the amount of work performed over a given

unit of time, i.e., work/time. A CPU scheduling algorithm that performs well will

accomplish a large amount of work in a given amount of time.

Response time in CPU scheduling is the time between when a command is issued

7

and a result is obtained [12]. For example, in interactive systems, such as a personal

computer, the time between when a user types a letter on his keyboard and the letter

appears on their screen would be the response time. The measure of response time

when a CPU scheduler is scheduling the CPU for VMs is slightly different. There is

no direct way to measure response time in such a fashion at the hypervisor level due

to the fact that a virtual machine process encapsulates all of the processes running

on a particular VM.

A better methodology for calculating response time for VM processes at the hy-

pervisor level is to look at the amount of time a process is in the ready state waiting

for access to a CPU. Using this metric provides an understanding of how much time a

VM spends waiting for access to a CPU. Much like a traditional measure of response

time, lower is better. Therefore an efficient CPU scheduling algorithm will reduce the

amount of time a process is in the ready state. The remainder of this paper will use

this metric whenever response time is referred to.

1.2.2 Xen CPU Scheduling Algorithms

The Xen hypervisor supports two CPU scheduling algorithms, the simple earliest

deadline first (sEDF) scheduler and the credit scheduler. The credit scheduler is the

default scheduler that is enabled with the default installation of Xen. The sEDF

scheduling algorithm can be used by setting the sched kernel boot parameter (see

Appendix A.5 for more details). Each CPU scheduling algorithm schedules CPU time

for the virtual CPUs (VCPU) for each VM.

8

1.2.2.1 The sEDF Scheduler

The sEDF (Simple Earliest Deadline First) scheduler delivers guaranteed CPU re-

sources to a VM. For each VM, a slice s and period p are set in milliseconds using

the xm sched-sedf command (for more details see Appendix A.5). Each VM is

guaranteed to receive s CPU time over each p. There is an optional boolean flag that

specifies whether a VM can receive extra CPU time, that is time not guaranteed to

other VMs during a specific p.

The sEDF algorithm keeps track of two additional values, the time a VM’s current

period ended, d, and remaining CPU time, r. The value d is used to determine what

VM to schedule next and the value r keeps track of the remaining time that a VM

has in a given period [2]. The VM with the earliest deadline i.e., the VM that has

gone the longest without access to the CPU, and still has remaining time (a positive

r value) will be scheduled first.

1.2.2.2 The Credit Scheduler

The credit scheduler is a “proportional fair-share CPU scheduler” [16]. The scheduler

tracks the “credit” of each VCPU that is scheduled for CPU time. A VCPU can either

be over credit (exceeding its fair share of the CPU) or under credit (not exceeding its

fair share of the CPU). Every time a VCPU has access to the CPU it uses credits, if it

is already over credits its credit value becomes negative. Priority is given to the VC-

PUs that are under credit. At a predetermined time the credit of each VCPU is reset.

The credit scheduler allows for a weight and cap value to be placed on each VM.

The weight value has a default setting of 256, with greater weight values specifying a

greater scheduling priority. For example, a VM with a weight of 512 will have twice

9

the scheduling priority as a VM with a weight of 256. The maximum value for weight

is 65535 [16]. The cap value determines the maximum number of CPU cores that a

VM can use and by default is set to 0, which indicates no limit. Each CPU core is

expressed as 100%, so a VM with a cap of 200% can use a maximum of two CPUs.

1.2.3 Scheduling Concerns

The CPU scheduler has much to do with the performance of the various VMs running

on a virtual server. The scheduler is controlling VCPU access to CPUs, which are not

the actual processes that are running on the VMs, but rather an encapsulation of the

VM’s processor. When a VCPU has access to a CPU, the underlying OS running on

the VM can use its own scheduler to schedule processes on the VM. This construct

adds a delay that is not present on physical hardware. If the hypervisor CPU sched-

uler does not operate efficiently, it can affect all of the VMs running on the server.

A big concern with CPU schedulers is what is known as a context switch. Before

a running process can be moved to a wait or blocked state all of the information

about the process must be saved so that the process can resume later. This includes

the state of the registers, file pointers, memory address points, and any other state

information that is necessary for the process to to resume when it has access to a

CPU again. A context switch is a rather expensive process and involves considerable

resources. In order to maintain performance, the number of context switches should

be minimized. If the number of context switches is not minimized, then conditions

can arise where more time is spent on performing context switches than actually

performing computation. Such a condition is referred to as “thrashing”. A very

simple example would be setting the time a process can spend running (called the

quantum) to a very low value. Assuming that it took 1ms for a context switch and

10

the quantum were set to 2ms, half of the time that each process was running would

be spent performing context switches. In such conditions, performance is adversely

impacted causing a decreasing level of throughput with an increasing response time.

1.3 Thesis Statement

This work examines the efficiency of particular scheduling algorithms in various con-

figurations on several different types of workloads. To this end, the hypothesis for

this research is:

An efficient virtual machine scheduling algorithm is important for increased

throughput and decreased response time. Given varying workloads, there will

be a particular scheduling algorithm that is more efficient at scheduling virtual

machines for particular types of workloads. Thus, it is possible to fine tune the

Xen hypervisor to maximize throughput and minimize response time with specific

types of workloads.

1.4 Contributions of Work

This project develops and explores virtual machine workloads in order to evaluate

the hypothesis by means of the following:

• Create three synthetic workloads that can be used in future research. The

synthetic workloads represent a typical real world workload for Windows and

Linux virtual machine environments.

• Measure the performance of each CPU scheduling algorithm for each case-study

workload, using throughput and response time as metrics.

• Determine whether scheduling algorithm performance is workload specific and

which scheduling algorithm is best suited for each of the synthetic workloads.

11

Specifically, this work develops a set of three synthetic workloads. The workloads

are platform independent and can be run on any number of other hypervisors, such as

those offered by Microsoft and VMware. Two of the case study workloads use open

source software, allowing the entire collection of virtual machines to be released for

use in future work. This is significant due to the fact that no such synthetic workloads

currently exist.

The results of running a performance study with each workload and each schedul-

ing algorithm provides insight into the impact of the hypervisor CPU scheduler on

the overall performance of a virtual machine system.

1.5 Looking Ahead

This chapter has laid the introductory framework from which this research proceeded

and provided a thesis statement. The issues associated with resource allocation,

specifically related to the CPU, were outlined and a motivation given for why one

would need to consider these issues. Now that the context for this research has been

established, the remaining chapters will expand upon it.

Chapter 2 gives a review of related research to provide an assessment of the state

of research in CPU scheduling and its relation to Xen. Points of interest are high-

lighted and their significance is discussed.

Chapter 3 gives a detailed architectural overview of the experimental system. The

specifications of the physical hardware are discussed as well as details about the con-

figuration of each of the three workloads.

12

Chapter 4 describes the design of the experiments. Care is given to discuss the

rationale for each experiment and the steps taken to conduct them.

Chapter 5 presents the results of the performance study and discusses the signif-

icance of the findings. Concluding statements based on the research are also provided.

Chapter 6 provides suggestions for future work that could stem from this research.

Emphasis is placed on areas where the work can be expanded and applied.

13

Chapter 2

Related Work

“The trouble with research is that it tells you what people were thinking about

yesterday, not tomorrow. It’s like driving a car using a rearview mirror.”

—Bernard Loomis

This chapter details some key previous work that has laid the ground work for

this research. Nearly every performance study on virtualization acknowledges the the

importance of resource allocation via various scheduling algorithms [1] [2] [5] [8] [15].

Given this fact, it is surprising that there has not been more research conducted in

the area of resource allocation in virtual environments.

2.1 Xen and the Art of Virtualization

Xen and the Art of Virtualization [1] marked the initial release of the Xen hypervisor

in 2003. The paper discusses the architecture of the Xen hypervisor and provides

details on a comprehensive performance study that was conducted to determine the

cost of using virtualization. The authors found that there was a very small overhead

of around 1%-5% associated with the use of Xen over a a series of benchmarks [1].

They also found that the performance of Xen was constantly higher than both User-

Mode Linux and VMware Workstation 3.2, up to 20x better in some cases [1].

The performance study conducted by the researches was repeated and expanded

by a group of graduate students at Clarkson University. They matched the hardware

and benchmarks that were used in the original study and found that they were able

to get results that were within 5% of the results obtained by Batham et al. [3].

2.2 Xen CPU Scheduling Research

Since the initial release of Xen there has been several papers published on hypervisor

CPU scheduling algorithms and their relation to performance. They seek to fill the

gap between the initial research does by the Xen team which was more of a justifi-

cation for the use of Xen than a study on CPU scheduling. In general the follow-up

research focuses on the balance of scheduling priority between domain. An overall

theme is the use of both micro-benchmarks. While such methodologies allow for the

discovery of overall trends they fail to give a real world notion of performance as this

work seeks to do.

Cherkasova, et al. studied the effects of the borrowed virtual time (since removed

from Xen), sEDF, and credit CPU schedulers on performance [2]. They used httperf to

benchmark a web server along with two microbenchmark tools, dd for disk through-

put and iperf for network throughput. The main focus was on the relationship

between the CPU utilization of Domain0 and an additional VM that was running on

throughput. They found that increasing the scheduling priority of Domain0 did not

increase performance [2]. This result is significant, but the general methodology of

using microbenchmarks does not translate into real world performance. This research

expands on these results by using case study workloads.

15

Xu, et al. [15] conducted a performance study on the credit scheduler. They found

that CPU bound jobs running in a VM have a negligible effect on I/O bound jobs

running in a separate VM. The results were run with microbenchmarks that had the

goal of pushing each test parameter, network or disk, to its limit. While there findings

were interesting, these is little direct correlation to real world applications.

DeDiana [5] performed a study on the effects of various configurations of the

sEDF CPU scheduler using multiple heterogeneous workloads. The main tools used

for load generation were dd for disk throughput and iperf for network through-

put. The results showed that the throughput of I/O applications is sensitive to CPU

scheduling [5].

The overall trend seen in each work is the use of microbenchmarks. While they

are good at providing a measure of the maximum amount of throughput that can

be obtained by the network or disk, they fail to give any notion of the performance

for a real world application load. Further, in each research study a quad-core system

was not used. This work seeks to expand on the existing base research and study

the effects of real world workloads. The real world workloads that were created for

this study are outlined in the next chapter along with an overview of the virtual

environment.

16

Chapter 3

Virtual Machine Architecture

“It would appear that we have reached the limits of what it is possible to

achieve with computer technology, although one should be careful with such

statements, as they tend to sound pretty silly in 5 years.”

—John von Neumann, 1949

This chapter outlines the architecture of both the virtual machine environment

and the physical resources used for testing. Architectural details and design decisions

are included to provide an understanding of the underlying testing framework.

3.1 Hardware

To conduct this study parts were acquired to build a virtualization server. Major

system components are outlined in Table 3.1. For the experimentation it was impor-

tant that the server had more than adequate resources so that test results were not

distorted by side effects like thrashing.

3.2 Workloads

Three synthetic workloads were created to facilitate testing the efficiency of the two

Xen scheduling algorithms for each of the workloads. Efficiency was measured in

Table 3.1: Virtual System Specifications. An overview of the testbed system specifi-
cations.

Hardware Specification

CPU Intel Core 2 Quad Q9550 2.83Ghz with 12M L2 Cache and a 1333 Front
Side Bus

Memory 8GB PC6400 DDR2 running at 800MHz
Primary
OS Storage

80GB SATA 2 with 16MB Cache

VM Stor-
age

1TB SATA 2 with 32MB Cache

terms of throughput (higher is better) and response time (lower is better). The mea-

surements were taken at the virtual machine level using benchmarking tools specific

to each workload and at the hypervisor level using the Xenmon tool [8]. Xenmon

provides statistics about how much time each domain is using a CPU, blocked on an

I/O event, and waiting on the ready queue [8]. Together these three measurements

account for the time a virtual machine is running. In terms of the metric of response

time, an efficient scheduler is defined as one that minimizes the amount of time each

VM is in the hypervisor wait queue. XenMon also reports I/O count which is a rough

measure of I/O requested by a domain [8]. Through the I/O count statistic a mea-

sure of throughput can be captured as a higher I/O count of a particular scheduler

configuration is indicative of a higher level of throughput.

Each of the workloads that were created will be discussed in the following sections.

3.2.1 Web Application

The web application workload was created to replicate a very simple web application

that uses MySQL, Apache, and NFS (Network File System) servers. Each server

18

Figure 3.1: Web Application Workload Architecture. A high-level view of the web
application workload.

VM is separate so there is transfer of data between multiple virtual machines as

they work together to serve web content, which represents a layer of isolation that is

commonplace in many large scale web applications. The actual application is written

in PHP (PHP: Hypertext Preprocessor) and performs a number of representative

SQL (Structured Query Language) queries. The number of clients was simulated

using JMeter[7] so differing numbers of users interactions could be tested. The virtual

machine architecture is depicted in Figure 3.1.

3.2.2 VPS Application

The virtual private server (VPS) hosting workload was created to simulate a workload

that is present in virtual shared hosting environments. In such environments, each

user is given root access to a virtual machine in which any number of installed appli-

cations can be run. Each user’s VPS instance runs on a shared hardware node which

means that the hypervisor’s CPU scheduler must give a fair share of the CPU to each

VM to maintain overall performance. For this workload, each VPS was generalized as

a single instance of Apache and MySQL. This is a typical default Linux server set-up

19

Figure 3.2: VPS Hosting Workload Architecture. A high-level view of the VPS
application workload.

refereed to as a LAMP (Linux, Apache, MySQL, PHP) installation. Each VPS ran

the same web application from the web application workload. The virtual machine

architecture is depicted in Figure 3.2.

3.2.3 Windows Domain

The Windows Domain case study workload is designed to replicate a simple corporate

Windows domain consisting of an Active Directory Server, an MSSQL Server, an

Exchange Server, and a SharePoint Portal Server. This workload uses all closed

source tools. It is included because it represents the set of servers that are run in

many businesses and are prime candidates for virtualization. Further, both Citrix

and Sun have adopted the Xen hypervisor in their virtualization products which are

both aimed at datacenter usage to consolidate servers, many of which are running

Windows Server operating systems. The virtual machine architecture of the workload

is depicted in Figure 3.3.

20

Figure 3.3: Windows Domain Workload Architecture. A high-level view of the win-
dows domain application workload.

3.2.3.1 Active Directory

Active Directory (AD) is Microsoft’s authentication and user management system.

AD consists of one or more servers running Server 2003 with the domain controller

role installed. After a domain is created, machines are joined to it and authenticate

though one of the domain controllers. In a typical organization with many users and

computers, AD provides user authentication. Exchange and SharePoint also use AD

to authenticate users for access to email and portal services.

3.2.3.2 Exchange

Exchange is Microsoft’s email solution that has integrated contact and calendar man-

agement. It provides web mail, MAPI (Messaging Application Programming Inter-

face), POP3 (Post Office Protocol), SMTP (Simple Mail Transfer Protocol), and

IMAP (Internet Message Access Protocol). The Outlook mail client provides con-

nectivity to a user’s mail though the use of MAPI and RPC (Remote Procedure

Protocol).

21

3.2.3.3 SharePoint

Microsoft Office SharePoint Server (MOSS) is a collaberative web-based portal system

that allows users to upload and share documents. Many businesses and organizations

leverage MOSS to provide employees with a central file repository and to allow for

easy collaboration. MOSS runs on its own instance of Server 2003. It heavily relies

on Microsoft SQL (MSSQL) for storage of configuration files, user content, and docu-

ments. Documents are stored in the database as binary large object (blob) datatypes.

3.2.3.4 MSSQL

Microsoft SQL (MSSQL) Server is Microsoft’s implementation of a SQL (Structured

Query Language) database server. MSSQL is used to store all of the SharePoint

configuration, user content, and user uploaded documents.

3.3 Test Machine

All of the load generation was conducted from a Windows XP SP3 computer, herein

referred to as the test machine. The test machine was joined to the Windows domain

that was established as part of the Domain workload to allow for the proper function-

ing of the MOSS and Exchange test tools. The hardware specifications of the test

machine can be seen in Table 3.2.

3.4 Network Overview

The network architecture was designed so that there was a private network between

the test machine, VMs, and the Xen server. The private network consisted of a

crossover Ethernet cable between the Xen server and the test machine. On the Xen

server the physical Ethernet adapter, eth0, is bound to a virtual Ethernet adapter

22

Table 3.2: Test Computer Specifications. An overview of the test computer specifi-
cations.

Hardware Specification

CPU Intel Pentium E2180 2.0Ghz Dual Core with 1M L2 Cache and an 800
Front Side Bus

Memory 4GB PC5300 DDR2 running at 400MHz
Storage 80GB SATA 2 with 16MB Cache

called peth0. The virtual adapter, peth0, is connected to a bridge interface. Each

of the VMs has a virtual Ethernet adapter on the bridge interface. In this manner

each VM is presented the equivalent of a direct connection to the private network.

In addition to the private network, a public network with no connectivity to the

VMs was included to allow for management. The network architecture is depicted in

Figure 3.4.

This chapter provided an overview of the test system, the Xen server, and each

case study workload application. The following chapter will discuss the experimental

design that was built upon this architecture.

23

Figure 3.4: Network Architecture. An overview of the network architecture created
for experimentation.

24

Chapter 4

Experiment Design

“Beware of bugs in the above code; I have only proved it correct, not tried it”

—Donald Knuth

In Chapter 3 the physical and virtual architecture of the test system were outlined.

This chapter builds upon that discussion by providing an overview of the experimental

design. The overall goal of each series of experiments was to introduce a varying user

load on each case study application workload so that the efficiency of each CPU

scheduling algorithm could be determined, both at the application level and the

virtual machine level.

4.1 Web Application Workload Experiment

The web application workload focused on a web application that was created to repre-

sent a dynamic website where a user’s visit to the page involved multiple interactions

with a database. The throughput and response time of the application was measured

with JMeter.

With each of the experiments, five configurations of the credit scheduler and five

configurations of the sEDF scheduler were used. Each configuration was set to give a

varying level of priority to the scheduling of the main VMs involved in the test. The

credit scheduler was used with weights of 256, 512, 1024, 2048, and 4096 set for the

NFS, MySQL, and Apache Server VMs. The configurations for the sEDF scheduler

are outline in Table 4.1.

Table 4.1: Web Application sEDF Scheduler Configurations. An overview of the slice
and period used for the sEDF scheduler. The value in parenthesis indicates the name
used to refer to that scheduler configuration.

Configuration (name) Domain0
Slice (ms)

MySQL, NFS, Apache
VM Slice (ms)

Period
(ms)

Default (sedf-20) 15 (with 20ms
period)

20 100

Equal Slices (sedf-2.5) 2.5 2.5 10
More Weight to Main VMs (sedf-
2.8)

1.6 2.8 10

Equal Slices w/ Large Period
(sedf-250)

250 250 1000

Greater Main VMs Slices w/
Large Period (sedf-280)

160 280 1000

4.1.1 Application Design

The web application was designed to represent a simple dynamic webpage that loads

information from a database. This type of interaction is very common in the design

of modern websites where content changes rapidly and is often stored in a central

database. The basic design of the web application is outline is Figure 4.1. The main

page was written in php and relies on a MySQL database. The web application per-

forms several select statements and an insert statement to a table in the database

to simulate the process of a logging a user’s visit and a user’s interaction with the

application.

26

Send webpage header to c l i e n t
Simulate a c l i e n t l o g i n
Set s e s s i o n v a r i a b l e s
Log a user ’ s v i s i t to the s i t e
Get main html from database
Send webpage f o o t e r html to c l i e n t

Figure 4.1: Pseudo Code for the Web Application. A basic outline of the web appli-
cation design.

4.1.2 Running the Experiment

Each experiment was run using a Widows PowerShell script. PowerShell was used for

its ability to bring Linux-like scripting functionality to Windows. The pseudo code

for the script is shown in Figure 4.2

f o r each schedu l ing a lgor i thm c o n f i g u r a t i o n
f o r each user load

run f i v e t imes
run SQL setup s c r i p t
run JMeter in the background
run xenmon f o r 30 minutes
run SQL teardown s c r i p t

Figure 4.2: Pseudo Code for the Web Application Workload Testing Script. A basic
outline of the script used to run the web application workload experiment.

4.2 VPS Workload Experiment

The VPS workload used the same application that was designed for the web appli-

cation workload. The application was installed on each instance of a VPS. Apache

JMeter was used to create a user load of 25, 50, 100, 500, and 800 simultaneous users

on each VPS.

27

4.2.1 Running the Experiment

The experimentation process was scripted using Windows PowerShell. The pseudo

code of the script is provided in Figure 4.3. The throughput and response time of the

application on each VPS was measured with Apache JMeter.

f o r each schedu l ing a lgor i thm c o n f i g u r a t i o n
f o r each user load

run f i v e t imes
run SQL setup on each VPS
run JMeter on each VPS
run xenmon f o r 30 minutes
run SQL teardown s c r i p t on each VPS

Figure 4.3: Pseudo Code for the VPS Workload Testing Script. A basic outline of
the script used to run the VPS workload experiment.

4.3 Windows Domain Workload Experiment

The primary services that were focused on for the Windows domain workload were

Exchange and MOSS (see Section 3.2.3.2 and Section 3.2.3.3 for more details on each).

Exchange performance was evaluated with a Microsoft tool called Exchange Load

Generator (LoadGen). LoadGen creates a customizable user load on an Exchange

server [9]. More details about the tool may be found in Appendix B.2. For the exper-

imentation, user loads of 25, 50, 100, 500, and 1000 were used. Each user was set to

a heavy level of activity to represent very active Exchange users, that is, users that

are constantly sending and receiving emails and creating multiple calendar events.

Microsoft does not have an analogous tool to test MOSS, so Apache JMeter was

used. JMeter allows web events to be captured though the use of a proxy server (see

28

Appendix B.1 for more details). A proxy server is an intermediary server that resides

between a client’s web browser an any network resources that reside on a network.

When the proxy server is initialized, every web request from a browser goes through

the JMeter proxy server and creates a web event that can then be put into a test

suite and played back. For the experimentation, a test suite was created that involved

going to the main MOSS site, creating a table, and then uploading a small document.

User loads of 25, 50, 100, and 500 were tested.

With each of the experiments, four configurations of the credit scheduler and four

configurations of the sEDF scheduler were used (except for MOSS where an additional

configuration of the credit scheduler was used). Each configuration was set to give a

varying level of priority to the scheduling of the main VMs involved in the test. In

the Exchange tests using the credit scheduler, the Exchange VM was given weights of

256, 512, 1024, and 2048. For the MOSS test the same weights for the credit scheduler

were used, but the weights were set on both the MOSS VM and the MSSQL VM,

as both VMs are integral to the operation of a sharepoint site. Both the MOSS and

Exchange tests used the same configuration values for the sEDF scheduler. The sEDF

configurations are outline in Table 4.2.

4.3.1 Running the Experiments

Each experiment was run using a PowerShell script. The pseudo code for the script is

provided in Figure 4.4. The PowerShell script performed the setup of each test tool,

started the test tool, and ran xenmon.

29

Table 4.2: Windows Domain sEDF Scheduler Configurations. An overview of the
slice and period used for the sEDF scheduler.

Configuration (name) Domain0
Slice (ms)

Main
VM
Slice
(ms)

Other
VM
Slice
(ms)

Period
(ms)

Default (sedf-20) 15 (with 20ms
period)

20 20 100

Equal Slices (sedf-2) 2 2 2 10
More Weight to Main VMs (sedf-
2.8)

2 2.8 1.8 10

Equal Slices w/ Large Period
(sedf-200)

200 200 200 1000

Equal Slices w/ Large Period
(sedf-175)

175 175 175 1000

f o r each user load
f o r each schedu l ing a lgor i thm c o n f i g u r a t i o n

run f i v e t imes
run SQL setup s c r i p t
s t a r t the t e s t i n g t o o l in a background proce s s
run xenmon f o r 30 minutes
run SQL teardown s c r i p t

Figure 4.4: Pseudo Code for the Windows Workload Testing Script. A basic outline
of the Windows PowerShell scripts that were used for the Window domain workload
experiments.

4.4 Results Analysis

The experimental design resulted in the generation of a large about of data. Each

script produced 125 output files on the test machine and 500 files on the Xen server.

This section describes the process used to reduce all of the collected data into a

manageable format.

30

4.4.1 JMeter

All of the JMeter tests were configured to output the results to an XML (eXensible

Markup Language) file with a jtl extension. The output files contained informa-

tion about every request that was made. An example of an entry in the output file

is provided in Figure 4.5 with an explanation of each logging parameter outlined in

Table 4.3.

<httpSample t="165" lt="165" ts="1269905827968" s="true"
lb="HTTP Request" rc="200" rm="OK" tn="Thread Group 1-3"
dt="text" by="5017"/>

Figure 4.5: JMeter Log Entry. A sample of a JMeter log entry. An explanation of
each field is provided in Table 4.3.

The log files were quite large since they were in XML format and there were many

requests. To help prune the information, each logfile was processed by a python script

that parsed the jtl files and output csv (comma separated value) files that contained

a single column with each response time. For example, the script would take the

sample entry in Figure 4.5 and return 165 on single line.

Once the log files were in the more portable csv format, they were imported into

Microsoft Excel. A sheet was created for each userload. Within each sheet a column

was created for each run of each scheduler configuration. The csv files containing

the response times of each configuration were then imported into the appropriate

columns. After all of the data was imported into Excel, a summary sheet with a

condensed view of the data was created. The summary sheet contained average

response times, average throughput, the standard deviation of each averaged value,

and a 95% confidence interval calculation. Using this summary data, graphs were

then created.

31

Table 4.3: JMeter Log Entry Parameter. A description of each of the JMeter param-
eters captured.

Parameter Meaning

httpSample Specifies that
the entry is an
HTTP request

t Response time
lt Latency
ts Timestamp of

request
s True/False value

that specifies
whether the
request was
successful

lb Label of the test
rc Response code
rm Response mes-

sage
tn Thread name
dt Data type
by Bytes trans-

ferred

4.4.2 LoadGen

The LodGen tool produced an XML file that contained a summary of the latencies

for each task completed, such as logging on, creating a calendar event, sending email,

etc. This data was already reduced to a point that was manageable. The latencies of

several tasks were chosen and used to present the performance of each scheduler con-

figuration. Unlike the JMeter tool, LoadGen does not attempt to perform as many

connections as possible so a measure of throughput was not obtainable.

32

4.4.3 Xenmon

Xenmon was used to collect CPU allocation information about each VM at the hy-

pervisor level, namely the amount of time that each domain spent in the blocked, run-

ning, and ready states. More information on the tool can be found in Appendix B.7.

Xenmon was configured to output all of its logging information to a file at 1 second

intervals and run for a total 1800 seconds (30 minutes). By default xenmon collects

information for each domain and saves it to a file with a .log extension. Since

the log files were tab delimited they lent themselves to easy importation into an R

dataframe. To simplify the process, an R function was written that took the location

of a log file, the name of a log file, and a domain number. The function then returned

the average percentages that the given domain spent in the blocked, running, and

wait states. The averages were taken over the 5 test runs that were performed for

each combination of scheduler configuration and user load.

This chapter presented the experimental design that was used to conduct all of

the experiments used in this research. Now that a solid background and rationale to

the execution of the experimentation has been given, the results can be presented.

In the next chapter the results of the experimentation are presented along with an

analysis of the trends.

33

Chapter 5

The Results: Analysis and

Conclusions

“It is hardware that makes a machine fast. It is software that makes a fast

machine slow.”

—Craig Bruce

This chapter presents the results obtained from running the experiments described

in the previous chapter. An analysis of the results for each application and scheduling

configuration pair is given along with an explanation and consideration of the signif-

icance and limitations. This is followed by a summary and conclusions based on the

results collected.

5.1 Introduction

As expected, the performance study experiments produced a large amount of data.

This data was reduced using techniques that were outlined in Chapter 4, namely

through the use of python and R scripts, along with Microsoft Excel. In addition to

the reduction, a statistical analysis was performed on the data. This analysis included

the determination of standard deviations and 95% confidence intervals.

Standard deviation is a measure of dispersion, i.e., how close a set of values is

to the average value of the data set. Higher values of standard deviation indicate

a greater variability in the results. The general formula for calculating standard

deviation is given in Equation 5.1. The standard deviation, σ, is equal to the square

root of the summation of each value, x, subtracted from the mean value, x̄, squared

divided by the total number of items in the data set, N . Using this calculation, it

was possible to determine the variability of the average values for throughput and

response time that were calculated.

σ =

√
Σ(x− x̄)2

N
(5.1)

The value of standard deviation only indicates the degree of variability within a set

of data. However when coupled with a confidence interval, a greater understanding

of the nature of variability of the results can be obtained. A confidence interval is a

measure of the variability of a set of data within a given percentage of the data. For

example, a 95% confidence interval of ±10 indicates that 95% of the values in the

data set are within a range of [x̄ − 10, x̄ + 10], where x̄ is the mean of the values in

the data set. Smaller confidence intervals indicate that that there is less variability

of the majority of the data. The general formula for calculating a 95% confidence

interval is given in Equation 5.2 where N is the number of values in the data set, x̄

is the mean of the data set, and σ is the standard deviation of the data set. Using

this calculation it was possible to determine a range that 95% of the data results

fell within and helped to establish a level of confidence in the mean values that were

calculated.

CI = [x̄− 1.96(
σ√
N

), x̄+ 1.96(
σ√
N

)] (5.2)

35

The remaining sections of this chapter use these statistical techniques to ana-

lyze the results. A discussion of the rationale behind the observed trends and their

significance is included with the analysis.

5.2 Web Application Results

The web application study showed that results for throughput and response time

varied with both the user load and scheduler configuration. An overall trend that

emerged was that there was not one scheduler that performed best over all of the

user loads. However, for each user load, there were one or two scheduler configu-

rations that maximized throughput and minimized response time. These values are

indicated by bold typeface in Tables 5.1 and 5.4. For example, the credit-256 and

sedf-2.5 scheduler configurations had the highest throughput for 25 users with values

of 127.57 and 126.86, respectively.

During the execution of each test xenmon ran on Domain0 to collect CPU schedul-

ing information about the blocked, waiting, and cpu execution time for each virtual

machine. The output that was captured provided insight to the characteristics of

each VM across user loads. A summary of the output for the web application VMs is

provided in Tables 5.7, 5.8, 5.9, and 5.10. The Apache VM xenmon output indicates

that the VM was CPU bound. The data shows that the VM spent approximately

90% of its execution time in a waiting state while spending only around 1% of its

execution time in a blocked state (as seen in Table 5.7). The NFS VM was both

I/O and CPU bound, although more so CPU bound. This is due to the fact that

this VM was performing mostly I/O in the form of disk and network access as it

fulfilled its role as a file server. The VM spent approximately 40% of its execution

time blocked and around 60% of its execution time waiting for access to a CPU as

36

seen in in Table 5.8. The MySQL VM had similar constraints to the NFS VM, in

that it was CPU and I/O bound as shown in Table 5.9. However, the VM spent less

time blocked and and nearly double the amount of time using the CPU (3%-8%), as

seen in Table 5.9. An interesting trend that was seen with all of the VMs was that

the CPU scheduling algorithm did not have a marked effect on the amount time a

VM spent in each state. The xenmon output also revealed that for each user load,

each scheduling configuration was close with respect to blocked, run, and wait time

percentages.

An overall correlation can be seen between scheduler configurations in Figure 5.1

and Figure 5.2. Configurations that had high levels of throughput tended to have

low levels of response time, independent of user load and scheduler configuration.

This type of correlation is expected given the nature of the web application workload.

If each connection has a lower response time, then more connections can occur in

any given interval of time. This is especially true when the confidence interval has

a smaller range. For example, with 25 users the sedf-2.5 configuration has a small

confidence interval for response, as seen in Figure 5.2, with a high level of throughput,

as seen in Figure 5.1.

Another trend that emerged with response time was a jump in response time be-

tween 100 and 500 users (as seen in Figure 5.2). Increasing the user load from 25 to

50 users caused, in general, a doubling of response time over each of the scheduler

configurations. This doubling was also seen when the user load was increased from 50

to 100 users. However, an increase in user load from 100 to 500 users caused a much

more significant increase in response time. These increases are shown graphically in

Figure 5.2 and are also represented in Table 5.4. Along with increasing response times

37

came increasing confidence intervals, indicating a greater variability in the response

time from request to request (as seen in Table 5.6).

An interesting trend was seen with the sEDF scheduler when the slice and period

were set to give a higher scheduling preference to Domain0. In each instance (sedf-20

and sedf-280) neither throughput nor response time were optimized. This trend is

interesting because it seems to be intuitive that giving a higher scheduling prefer-

ence to Domain0 would increase throughput due to the fact that all I/O must pass

through Domain0. However, it turned out that more fairly sharing the CPU resources

between all of the VMs leads to higher level of throughput and lower response time.

For example, this can be seen in in Table 5.1 where with a user load of 25 users the

sedf-2.5 configuration was able to achieve a higher level of throughput than the sedf-

20 configuration, 126.86 and 87.26 requests per second, respectively. Coincidentally

the sedf-20 configuration is the default configuration of the sEDF scheduler. There-

fore, this analysis would indicate that the default configuration of the sEDF scheduler

should be changed to maximize throughput.

Another trend observed is related to the performance of the credit-256 scheduler

configuration, which is the default scheduler configuration for the Xen hypervisor.

This configuration performed best only for user loads of 25 and 100 users. However,

in each case it was very close, if not indistinguishable, from the next best scheduler

configuration. For example, this can be seen in Table 5.1 under the 25 users column

with the credit-256 and sedf-2.5 scheduler configurations. In fact, the credit scheduler

was only the clearly optimal scheduler configuration for the tests with a user load 50

and 100 users.

38

A recurring conclusion is that a simple increase in scheduling priority did not

correspond to an optimal scheduler configuration. Rather, there are optimal configu-

rations of each scheduler for each user load. This points to a distinct benefit from fine

tuning the CPU scheduling algorithm based on the anticipated user load of a server

running a web application. Failure to do so could result in suboptimal throughput

with a high response time, especially as the user load on a server increases.

Table 5.1: Web Application Throughput Results. An overview of the web application
throughput results.

25 Users 50 Users 100 Users 500 Users 800 Users
credit-256 127.57 90.97 94.39 66.15 89.23
credit-512 90.30 101.65 74.39 79.36 71.37
credit-1024 118.79 77.72 91.86 83.97 82.07
credit-2048 108.26 107.08 77.30 95.42 83.30
credit-4096 115.04 91.07 89.46 70.24 77.03
sedf-20 87.26 71.87 84.88 70.67 91.37
sedf-2.5 126.86 85.84 76.45 82.42 66.86
sedf-2.8 85.84 71.41 70.72 80.80 102.60
sedf-250 104.52 101.06 89.75 94.36 83.54
sedf-280 103.01 84.19 78.71 69.35 79.88

Table 5.2: Web Application Throughput Standard Deviation. An overview of the
standard deviation of the throughput values obtained in the web application tests.

25 Users 50 Users 100 Users 500 Users 800 Users
credit-256 28.83 25.05 26.14 9.76 26.71
credit-512 7.95 21.57 4.81 24.57 8.35
credit-1024 33.20 6.88 36.91 23.81 23.67
credit-2048 34.12 26.34 14.65 23.80 17.15
credit-4096 42.49 25.83 29.25 6.84 19.43
sedf-20 10.93 11.10 17.59 10.83 21.85
sedf-2.5 24.05 27.13 17.74 23.39 13.54
sedf-2.8 19.98 18.97 17.40 28.48 23.06
sedf-250 21.74 16.14 26.67 27.26 25.03
sedf-280 28.75 28.92 26.64 15.57 20.09

39

0

20

40

60

80

100

120

140

160

25 50 100 500 800

Th
ro

ug
hp

ut
 (R

eq
ue

st
s/

s)

Number of Users

Web Application Throughput for Varying User Loads With 10 Scheduler
Configurations

credit-256

credit-512

credit-1024

credit-2048

credit-4096

sedf-20

sedf-2.5

sedf-2.8

sedf-250

sedf-280

Figure 5.1: Web Application Throughput Graph. A graphical depiction of the average
throughput for each scheduler configuration under each user load with 95% confidence
intervals.

40

0

1000

2000

3000

4000

5000

6000

7000

8000

25 50 100 500 800

Re
sp

on
se

 T
im

e
(m

s)

Number of Users

Web Application Response Time for Varying User Loads With 10 Scheduler
Configurations

credit-256

credit-512

credit-1024

credit-2048

credit-4096

sedf-20

sedf-2.5

sedf-2.8

sedf-250

sedf-280

Figure 5.2: Web Application Response Time Graph. A graphical depiction of the
average response time for each scheduler configuration under each user load with
95% confidence intervals.

41

Table 5.3: Web Application Throughput 95% Confidence Intervals. An overview of
the 95% confidence interval of the results obtained in the web application tests. Each
value indicated in the table is a ± value from the mean.

25 Users 50 Users 100 Users 500 Users 800 Users
credit-256 25.27 21.96 22.91 8.56 23.41
credit-512 6.97 18.91 4.22 21.53 7.32
credit-1024 29.10 6.03 32.35 20.87 20.75
credit-2048 29.91 23.08 12.84 20.86 15.03
credit-4096 37.24 22.64 25.63 6.00 17.03
sedf-20 9.58 9.73 15.42 9.49 19.15
sedf-2.5 21.08 23.78 15.55 20.50 13.27
sedf-2.8 17.51 16.63 15.25 24.97 22.60
sedf-250 19.06 14.15 23.38 23.90 24.53
sedf-280 25.20 25.35 23.35 13.65 19.69

Table 5.4: Web Application Response Time Results. An overview of the web appli-
cation response time results.

25 Users 50 Users 100 Users 500 Users 800 Users
credit-256 220.30 618.06 1192.09 5224.85 3822.37
credit-512 311.22 553.07 1512.10 4377.85 4747.73
credit-1024 236.58 723.49 1111.19 4147.77 4146.33
credit-2048 259.60 525.53 1455.03 3683.12 4081.55
credit-4096 235.78 597.93 1184.03 4898.51 4183.56
sedf-20 322.05 782.65 1325.95 4937.94 3748.72
sedf-2.5 221.64 655.09 1472.74 4256.22 5113.35
sedf-2.8 327.41 788.07 1591.51 4345.55 3343.20
sedf-250 268.86 556.45 1253.92 3741.93 4132.89
sedf-280 272.78 668.55 1430.21 5020.05 4290.56

42

Table 5.5: Web Application Response Time Standard Deviation. An overview of the
standard deviation of the response times obtained in the web application tests.

25 Users 50 Users 100 Users 500 Users 800 Users
credit-256 279.20 889.60 1097.09 26644.68 19244.45
credit-512 472.89 861.67 1483.54 23206.43 23122.98
credit-1024 343.43 1046.29 1271.06 21905.31 20851.13
credit-2048 477.62 621.45 1535.92 19790.31 20554.25
credit-4096 420.28 829.48 1310.98 25000.24 21138.53
sedf-20 413.43 1022.37 1389.26 25544.79 19257.95
sedf-2.5 457.66 855.04 1560.97 22704.97 25161.39
sedf-2.8 587.43 1136.45 2039.60 23459.66 17026.94
sedf-250 476.90 735.39 1514.84 20593.05 21059.83
sedf-280 472.08 1027.21 1910.56 26032.41 21579.15

Table 5.6: Web Application Response Time 95% Confidence Intervals. An overview
of the 95% confidence interval of the response times obtained in the web application
tests. Each value indicated in the table is a ± value from the mean.

25 Users 50 Users 100 Users 500 Users 800 Users
credit-256 21.68 81.83 99.08 2874.76 1786.019
credit-512 43.64 74.93 150.96 2285.65 2401.97
credit-1024 27.64 104.11 116.28 2097.44 2018.3
credit-2048 40.25 52.66 153.22 1775.99 1975.16
credit-4096 34.35 76.22 121.53 2615.40 2111.51
sedf-20 38.81 105.76 132.24 2664.79 1767.57
sedf-2.5 35.62 80.91 156.54 2192.40 3018.05
sedf-2.8 55.59 117.89 212.77 2290.43 1648.13
sedf-250 40.91 64.14 140.27 1859.77 2258.55
sedf-280 40.77 98.24 188.89 2742.99 2368.03

43

Table 5.7: Web Application Apache VM CPU Time. An summary of the percentage
of total runtime that the Apache VM spent in the blocked, running, and waiting
states.

25 Users 50 Users 100 Users 500 Users 800 Users
block run wait block run wait block run wait block run wait block run wait

credit-256 0.1 10 90 1.1 9.8 89.1 0.1 12.4 87.5 0.4 13.8 85.8 0.1 12.7 87.1
credit-512 1.2 10.4 88.6 1.2 10.4 88.4 1.4 11.6 87.1 0.6 12.9 86.5 1 12.3 86.7
credit-1024 1.4 10 88.6 0.4 10.9 88.8 2.2 11.1 86.6 0.2 13.6 86 0.5 13.6 85.9
credit-2048 1.4 9.9 88.7 0.7 10.6 88.7 1.2 12.4 86.4 0.8 12 87.1 0.6 12.2 87.3
credit-4096 1.3 9.9 88.8 1.2 11.6 87.3 1.3 12 86.7 0.4 13.2 86.3 0.6 13.3 86.1
sedf-20 0.3 7.7 92.1 1.8 8.1 90.1 0.6 11.7 87.7 0.6 11.6 87.8 0.1 13.5 86.4
sedf-2.5 0.6 7.3 92.1 1.5 7.9 90.6 0.2 9.9 90 0.2 9.7 90.1 0.1 7.9 92
sedf-2.8 2 6.8 91.2 1.6 8.1 90.3 0.7 11.6 87.7 0.3 10.3 89.4 0.1 9 90.9
sedf-250 2.1 8.2 89.8 1.8 8.5 89.7 1 11.1 89.3 0.2 10.5 89.3 0.8 13.1 86.1
sedf-280 12 7.7 90.9 1.6 9.6 88.8 0.8 10.1 89.1 0.4 11.2 88.4 0.4 11.2 88.5

Table 5.8: Web Application NFS VM CPU Time. An summary of the percentage of
total runtime that the NFS VM spent in the blocked, running, and waiting states.

25 Users 50 Users 100 Users 500 Users 800 Users
block run wait block run wait block run wait block run wait block run wait

credit-256 36.1 2.1 61.8 40 1.3 58.8 37.6 1.7 60.7 39.6 1.3 59.1 37.8 1.6 60.6
credit-512 37.2 1.7 61.1 37.5 1.7 60.7 38.4 1.5 60.1 39.9 1.2 58.8 38.6 1.4 60
credit-1024 37.6 1.7 60.7 36.4 1.8 61.8 39.9 1.3 58.8 40.7 1.3 58.1 40 1.2 58.8
credit-2048 38.4 1.6 60.1 38.5 1.6 59.9 39.6 1.3 59.1 38.6 1.5 60 39.5 1.5 59
credit-4096 37 1.6 61.1 38.5 1.5 60 39.6 1.3 59 40.1 1.3 58.6 40 1.3 58.6
sedf-20 43.2 1.4 55.4 41.6 0.8 57.6 39.9 1.1 59.1 46.3 0.8 52.9 41.4 0.7 57.9
sedf-2.5 42.9 1.3 55.8 46.2 0.8 53 45.1 0.9 54 41.8 1.1 57.1 39 1.1 59.9
sedf-2.8 45 0.9 54.2 42.2 1 56.8 46.3 0.8 52.9 40.5 1 58.5 40.3 1.1 58.6
sedf-250 41.7 1.1 57.1 39.5 1.1 59.5 42.3 1 56.7 44.2 0.7 55.1 45.8 1.1 53.1
sedf-280 42.1 1.5 56.4 40.9 1.2 57.9 45.8 0.7 53.5 43.4 0.8 55.8 45.8 1.2 53

44

Table 5.9: Web Application MySQL VM CPU Time. An summary of the percentage
of total runtime that the MySQL VM spent in the blocked, running, and waiting
states.

25 Users 50 Users 100 Users 500 Users 800 Users
block run wait block run wait block run wait block run wait block run wait

credit-256 25.8 7.6 66.5 34.2 4.6 61.2 29.7 6.2 64.1 33.8 4.8 61.4 30.6 5.9 63.5
credit-512 29.4 6.1 64.4 29.2 6.3 64.6 31.4 5.4 63.1 34.6 4.5 60.9 32.1 5.3 62.6
credit-1024 29.8 6.1 64.1 28.3 6.8 64.9 33.8 4.7 61.5 34.7 4.6 60.7 34.7 4.4 60.9
credit-2048 31.4 5.7 63 30.5 6 63.5 33.9 4.5 61.5 31.6 5.5 62.9 32.6 5.3 62.1
credit-4096 29 6.3 64.6 31.8 5.3 62.9 33.3 4.63 62 34 4.8 61.2 34.8 4.4 60.8
sedf-20 25.4 6.4 68.2 39.7 3.3 57 30.5 5.1 64.4 33.4 3.5 63.2 34.9 3.8 61.3
sedf-2.5 28.9 5.4 65.6 39.1 3.2 57.7 29.6 4.9 65.5 27.4 5.3 67.3 37.4 3.5 59.2
sedf-2.8 37.9 3.4 58.7 31.5 4.7 63.8 34.9 3.6 61.6 38.1 3.2 28.7 34.4 4 61.5
sedf-250 32.4 5 62.5 35.2 4.5 60.3 34.1 3.5 62.4 39.9 3.1 57 34.3 4.1 61.6
sedf-280 28.5 6.1 65.4 42.1 3.1 54.8 41.3 2.7 56 36.2 3.8 60 34.1 4.6 61.3

Table 5.10: Web Application Domain0 CPU Time. An summary of the percentage
of total runtime that Domain0 spent in the blocked, running, and waiting states.

25 Users 50 Users 100 Users 500 Users 800 Users
block run wait block run wait block run wait block run wait block run wait

credit-256 21.3 33.6 45.1 37.3 22.4 40.3 28.1 28.3 43.6 36.7 21.7 41.5 30.2 26.7 43.1
credit-512 27.8 28.9 43.3 28 28.7 43.2 31.8 25.6 42.6 37.6 21.2 41.2 33.3 25.5 41.3
credit-1024 28 29.2 42.8 34 24.4 51.1 36.9 22.5 40.6 36.7 22.5 40.6 38.2 20.9 40.8
credit-2048 30.8 27 42.2 28.7 27.9 43.4 36.4 22.3 41.3 31.6 25.4 43 32.8 24.6 42.6
credit-4096 27 50.8 22.2 32.4 25.4 42.2 33.6 24.7 41.7 35.9 22.4 41.8 38.5 20.5 41
sedf-20 36.4 26.3 37.3 42.3 19 38.7 48.8 22.6 28.5 56.1 17.5 26.4 53.2 17.6 29.2
sedf-2.5 40.8 29.3 29.8 43.1 18.9 38.1 49.8 20.4 29.8 43.1 20.9 36 36.7 19.9 43.5
sedf-2.8 45.3 18.9 35.8 52.8 19.7 27.5 50.3 17.1 32.6 45.2 18.3 36.6 42.7 23.2 34.1
sedf-250 49.1 22.5 28.4 47.2 21.9 30.9 45.9 20.1 34 42.2 18.6 39.2 49.5 19.3 31.2
sedf-280 42.1 25.5 32.4 47.4 18.3 34.3 48.1 16.8 35.1 51.3 18.9 29.9 41.1 22.1 36.8

45

5.3 VPS Results

Due to the time constraints of the the research, it was not possible to complete the

VPS application case study tests. The VM image was created as a part of the work

and the web application was developed to run on each VPS instance. The results

of the study would provide insight into whether the performance of each VPS VM

instance could be improved through the adjustment of the scheduler configuration.

This remains a point for future research.

5.4 Windows Domain Results

This section presents the results that were obtained from running the Windows Do-

main tests.

5.4.1 Exchange Results

The Exchange LoadGen tool produced results that were not of a high enough quality

for analysis. The tool is aimed at Systems Administrators who want to test the

capacity of an Exchange mail server before deploying it in a production environment.

The output produced by the tool was neither verbose nor indicative of performance.

Given the nature of the results obtained it was not possible to provide an analysis of

how CPU scheduler configuration impacted performance.

5.4.2 MOSS Results

The MOSS experiments showed varying levels of throughput and response time. The

results showed that for more than 25 users the sEDF scheduler, under various con-

figurations, was best able to produce the highest levels of throughput. This trend

46

can be seen in in Figure 5.3 and Table 5.11. However, as shown in Section 5.2 for

the web application results, there was no one particular scheduler configuration that

performed best across all of the user loads. The performance of each scheduling al-

gorithm was largely determined by the user load as shown in Figures 5.3 and 5.4.

The relationship between response time and throughput that occurred for the web

application held true for the MOSS application. There were some exceptions though,

such as with 25 users where the credit-2048 configuration has the highest throughput

at 273 requests per second with a response that was also high at 162 ms (as seen

in Tables 5.11 and 5.14). This trend can be attributed to that fact that the tasks

performed in each test suite was not homogeneous because they were created as part

of a larger test suite of requests. There were some task that inherently had longer

response times than others and the throughput measurement did not differentiate

between the type of task completed. If more of the low response time tasks were

completed, then throughput can be higher, even when some other tasks have a higher

response time.

The xenmon results indicated that the MOSS VM was predominantly CPU bound

for most of the scheduler configurations across user loads. In Table 5.17 this trend

can be seen where, in general, most of the VM’s execution time is spent in a ready

state waiting for access to the CPU. This type of behavior can be expected with a

web server where little I/O is needed, especially if frequently accessed files are cached

in memory. The MSSQL VM that provides storage for the MOSS VM was both CPU

and I/O bound across user loads, as seen in Table 5.18 by the large amount of time

that was spend blocked and waiting in most scheduler configurations. This is dues

to the fact that while databases are stored in memory, frequent access to the disk

47

must still be performed to save the state of the database to persistent memory. An

interesting trend was seen with some scheduler configurations where the configuration

of the scheduler significantly effected the amount of time a VM blocked. For example,

in Table 5.18 with a user load of 25 users the sedf-2 and sedf-2.8 configurations both

caused the MSSQL VM to block and wait approximately 50% of the time while the

sedf-200 and sedf-175 configurations caused the VM to only block 11% of the time

and wait 77% of the time.

An overall trend evident in Table 5.16 is that response time for up to 100 users

was a fairly consistent across scheduler configurations. This can be seen in Figure 5.4

and is emphasised by the overlapping confidence intervals. The increase in user load

from 100 to 500 users drastically altered this trend, which would seem to indicate a

bottleneck in the system. Such a bottleneck could exist in two places, the test client

and/or the VMs. While a user load of 500 users on the MOSS server was high, even

higher user loads were sustained in the web application tests with much greater con-

stancy maintained with both throughput and response time (as seen in Figures 5.1

and 5.2). This would indicate that the VMs were more the source of the bottleneck,

however the client cannot be ruled out entirely. JMeter is a Java application and

creates a new thread for each client that it simulates, so with 500 clients being run

there are over 500 threads running. However, the task manager was run on the test

machine during the test executions and both CPU and memory utilization did not

exceed 50%, suggesting that there was indeed excess capacity on the test machine

while running high user loads. Unfortunately there is no way to detect if there was

thrashing that occurred within the JVM (Java Virtual Machine) as threads competed

for access to CPU and memory resources. The xenmon results provide some further

insight. A user load of 500 users cause each VM and Domain0 to spend an increased

48

amount of time blocked in many of the scheduler configurations as shown in Table

5.17.

The MOSS results point out that the default configuration (credit-256) of credit

CPU scheduler led to suboptimal levels of throughput with user loads of more than

25 users. This trend is clearly shown in Figure 5.3. The use of the optimal CPU

scheduler configuration resulted in an up to 14% increase in the level of throughput.

The largest increase in throughput over the default CPU scheduler configuration was

seen with a user load of 100 users as shown in Table 5.11 with a throughput of 265.75

requests per second for the credit-256 configuration and 304.76 requests per second

for the sedf-200 configuration.

Table 5.11: MOSS Throughput Results. An overview of the MOSS throughput re-
sults.

25 Users 50 Users 100 Users 500 Users
credit-256 267.24 272.35 265.75 138.61
credit-512 262.55 267.82 268.62 7.31
credit-1024 261.54 265.83 263.05 150.23
credit-2048 273.08 264.28 267.00 11.72
sedf-20 206.75 212.40 288.17 163.14
sedf-2 183.63 244.11 257.79 186.90
sedf-2.8 188.35 255.35 274.19 69.45
sedf-200 199.46 288.81 304.76 65.69
sedf-175 202.88 291.56 278.56 159.91

49

0

50

100

150

200

250

300

350

25 50 100 250 500

Th
ro

ug
hp

ut
 (R

eq
ue

st
s/

s)

Number of Users

MOSS Throughput for Varying User Loads With 9 Scheduler Configurations

credit-256

credit-512

credit-1024

credit-2048

sedf-20

sedf-2

sedf-2.8

sedf-200

sedf-180

Figure 5.3: MOSS Throughput Graph. A graphical depiction of the average through-
put for each scheduler configuration under each user load with 95% confidence inter-
vals.

50

0

1000

2000

3000

4000

5000

6000

25 50 100 250 500

Re
sp

on
se

 T
im

e
(m

s)

Number of Users

MOSS Response Time for Varying User Loads With 9 Scheduler Configurations

credit-256

credit-512

credit-1024

credit-2048

sedf-20

sedf-2

sedf-2.8

sedf-200

sedf-180

151480 78688 9794 14305020033 13206 9263

Figure 5.4: MOSS Response Time Graph. A graphical depiction of the average re-
sponse time for each scheduler configuration under each user load with 95% confidence
intervals.

51

Table 5.12: MOSS Throughput Standard Deviation. An overview of the standard
deviation of the throughput values obtained in the MOSS tests.

25 Users 50 Users 100 Users 500 Users
credit-256 16.45 3.23 3.22 109.74
credit-512 4.57 5.22 4.06 1.96
credit-1024 8.50 11.21 4.78 103.59
credit-2048 2.89 3.22 5.58 6.30
sedf-20 6.60 7.34 21.97 42.90
sedf-2 10.00 51.28 14.75 6.77
sedf-2.8 9.66 15.63 4.70 50.10
sedf-200 14.28 9.43 7.33 81.20
sedf-175 12.40 11.39 11.04 5.12

Table 5.13: MOSS Throughput 95% Confidence Intervals. An overview of the 95%
confidence interval of the results obtained in the MOSS tests. Each value indicated
in the table is a ± value from the mean.

25 Users 50 Users 100 Users 500 Users
credit-256 14.42 2.83 2.82 96.19
credit-512 4.01 4.57 3.56 1.72
credit-1024 7.45 9.82 4.19 90.80
credit-2048 2.53 2.82 4.89 5.52
sedf-20 5.78 6.43 19.26 37.61
sedf-2 8.77 44.95 12.93 5.93
sedf-2.8 8.46 13.70 4.12 43.92
sedf-200 12.52 8.27 6.43 71.17
sedf-175 10.87 9.98 9.68 4.49

52

Table 5.14: MOSS Response Time Results. An overview of the MOSS response time
results.

25 Users 50 Users 100 Users 500 Users
credit-256 124.63 237.20 490.59 5161.83
credit-512 125.32 242.73 484.54 151480.25
credit-1024 125.78 241.73 497.18 5538.13
credit-2048 165.80 246.22 487.16 78688.39
sedf-20 162.97 308.70 448.66 3998.81
sedf-2 181.23 268.19 500.92 4446.99
sedf-2.8 176.94 253.50 471.92 9793.52
sedf-200 166.80 221.75 422.57 14305.50
sedf-175 164.32 222.38 464.43 4167.24

Table 5.15: MOSS Response Time Standard Deviation. An overview of the standard
deviation of the response times obtained in the MOSS tests.

25 Users 50 Users 100 Users 500 Users
credit-256 806.08 643.30 883.26 18208.11
credit-512 615.95 656.26 783.92 167301.60
credit-1024 716.36 657.97 975.98 31602.61
credit-2048 575.20 709.18 841.36 114448.48
sedf-20 800.48 824.25 791.10 12286.09
sedf-2 667.94 1052.86 854.54 4916.91
sedf-2.8 703.36 715.97 900.74 17262.55
sedf-200 654.22 703.34 773.30 58447.32
sedf-175 706.18 665.89 900.56 4591.08

53

Table 5.16: MOSS Response Time 95% Confidence Intervals. An overview of the
95% confidence interval of the response times obtained in the MOSS tests. Each
value indicated in the table is a ± value from the mean.

25 Users 50 Users 100 Users 500 Users
credit-256 43.22 34.18 47.50 1355.65
credit-512 33.33 35.15 41.93 54650.85
credit-1024 38.84 35.37 52.75 2260.22
credit-2048 30.51 38.24 45.15 29453.99
sedf-20 48.81 49.60 40.86 843.50
sedf-2 43.21 59.08 46.67 315.33
sedf-2.8 44.94 39.28 47.70 1816.30
sedf-200 40.61 36.28 38.84 6325.22
sedf-175 43.47 34.19 47.31 318.34

Table 5.17: MOSS VM CPU Time. An summary of the percentage of total runtime
that the MOSS VM spent in the blocked, running, and waiting states.

25 Users 50 Users 100 Users 500 Users
block run wait block run wait block run wait block run wait

credit-256 8.8 32.4 58.8 2.6 36.7 60.7 2 37.5 60.5 8.1 33.4 58.5
credit-512 3.3 35.5 61.3 2.7 36 61.3 2 36.8 61.2 41.1 8.3 50.5
credit-1024 3.4 34.6 62 1.9 35.9 62.2 1.7 36.4 62 41.2 7.5 51.3
credit-2048 3.6 35.4 61 3.3 35.7 61.1 1.7 37.2 61.2 37.8 11 51.2
sedf-20 4.1 27.3 68.6 49.4 0.5 50.1 1.7 29.6 68.7 12.6 23.4 64
sedf-2 49.3 0.6 50.1 48.7 0.6 50.7 47.9 0.6 51.5 48.2 0.6 51.2
sedf-2.8 3.5 26.4 70.1 49.2 0.6 50.3 2.9 27.7 69.4 8 25.2 66.8
sedf-200 4.9 26.6 68.6 3.7 27.8 68.5 1.8 30 68.2 39.6 7 53.4
sedf-175 5.7 26.7 67.6 2.4 29.5 68 48.1 0.6 51.3 49.3 0.6 50.1

54

Table 5.18: MOSS MSSQL VM CPU Time. An summary of the percentage of total
runtime that the MSSQL VM spent in the blocked, running, and waiting states.

25 Users 50 Users 100 Users 500 Users
block run wait block run wait block run wait block run wait

credit-256 33.2 9.6 57.2 30 11 59 30.2 10.9 58.9 33.4 9.7 56.9
credit-512 30.4 10.5 59 30.3 10.6 59.14 30.4 10.8 58.8 55.9 1.1 43
credit-1024 30.8 10.3 58.9 30.3 10.6 59.1 30.4 10.6 59 56.8 0.9 42.3
credit-2048 30.5 10.4 59 30.8 10.3 58.9 30.4 10.6 59 56.8 1.5 41.6
sedf-20 18.4 10.1 71.5 49.6 0.3 50.1 27 10.4 62.6 28.6 8.9 62.3
sedf-2 15 10.5 74.4 20.4 9.1 70.5 20.3 10.4 69.3 49.2 0.3 50.5
sedf-2.8 49.5 0.3 50.2 48.8 0.3 50.9 48.5 0.3 51.1 49 0.3 50.7
sedf-200 10.9 11.3 77.3 16.9 11.8 71.2 25.5 10.9 63.6 44.6 1.3 54.1
sedf-175 11.8 11.7 76.5 26.3 10.6 63.1 49.1 0.3 50.6 49.6 0.3 50.1

Table 5.19: MOSS Domain0 CPU Time. An summary of the percentage of total
runtime that Domain0 spent in the blocked, running, and waiting states.

25 Users 50 Users 100 Users 500 Users
block run wait block run wait block run wait block run wait

credit-256 45.9 15.7 38.5 42.1 17.3 40.6 42.4 17.1 40.5 46.2 15.3 38.5
credit-512 34.3 17.8 48 34.4 18.1 47.5 34.4 17.9 47.7 65.4 12.6 22.1
credit-1024 31.6 18.2 50.2 30.2 18.5 51.3 30.5 18.4 51 66 5.1 28.9
credit-2048 29.9 38.1 32 29.8 17.6 52.5 28.7 18 53.4 62.5 5.9 31.6
sedf-20 56.9 10.8 32.3 94.8 2.7 2.6 48.6 11.6 39.9 58.1 9.4 32.5
sedf-2 94.3 2.5 3.2 58.4 10.4 31.1 95.3 2.6 2.1 95.3 2.6 2.1
sedf-2.8 94.3 2.5 3.2 94.8 2.6 2.6 49.1 10.7 40.1 95.1 2.6 2.3
sedf-200 62.2 9.9 27.8 56.5 10.7 32.8 47.3 11.7 41 84.9 4.9 10.2
sedf-175 62.2 9.9 28.87 48.2 11.7 40.2 50.6 11.4 38.1 58 9.8 32.2

55

5.5 A Review of Claims and Contributions

This work successfully completed the intended goals. Its contributions include:

• The creation of three synthetic workloads that can be used in future research.

Each synthetic workload was constructed to represent a typical real world work-

load for Windows and Linux virtual machine environments.

• The measurement of the performance of two scheduling algorithms in various

configurations for each case-study workload, using throughput and response

time as metrics.

• Determination of which scheduling algorithms and which specific configurations

were best suited for each of the synthetic workloads given various target user

loads.

A listing of all of the source code used along with the Linux VMs can be released

for use in future work. In addition, all of the PowerShell scripts that were used to run

the experiments can also be released. This establishes a common open-source frame-

work that other performance studies can use. While the PowerShell scripts have code

that is specific to the Xen hypervisor, they can easily be modified to run on other hy-

pervisors. Thus, the workloads can provide a common framework for benchmarking

hypervisors.

Aside from the three workloads that were created, the results of the performance

studies that were conducted provide insight into the relationship between application

performance and the hypervisor CPU scheduler configuration. It suggests that a

simple “out of the box” hypervisor, while convenient, is most certainly not optimal.

56

5.6 Threats to Validity

The steps taken to conduct this research were carefully thought out and planned. The

statistical techniques that were employed established confidence in the data. Points of

data that have a low level of confidence are clearly stated, as indicated by a large con-

fidence interval. The only values that can potentially be scrutinized are the blocked,

wait, and execution time values obtained for each virtual machine. The percentage

values were calculated by taking the average of the 5 tests for each scheduler config-

uration with each user load. Since these values were calculated as percentages of the

total execution time and given the high level of indeterminacy of CPU scheduling,

it did not seem necessary to calculate standard deviations and confidence intervals.

This decision is, however, supported by the fact that in most cases each of the average

percentages calculated sum to 100%.

The main threat to validity comes in the form of hardware decisions, which were

largely limited by the amount of research funds that were available. The system that

was built for this research was a high-end work station computer. However, it was

not a server class machine. This distinction should not take away from the results.

Even with a more powerful system the hypervisor must still schedule VM access to

limited resources such as disk, network, CPU, and memory that all have the caveat

of only supporting a limited (if any) amount of parallel access.

5.7 Conclusion

This work highlighted the relationship between application performance and the hy-

pervisor CPU scheduling algorithm that is used. Through an empirical study, it was

determined that CPU scheduling is both workload and user load sensitive. Further,

57

simply setting a higher scheduling priority on a virtual machine does not provide any

guarantee of increased performance and in fact can lead to a degradation in perfor-

mance. To increase application performance an evaluation of the bottlenecks in the

system must be conducted. Once bottlenecks are identified, a performance study can

be conducted to determine methodologies for increasing performance that are based

on an understanding of the bottlenecks that exist in a system.

A significant result of this work is the justification for the use of sEDF CPU

scheduler in certain situations, as indicated by its ability to provide a consistently

better level of performance with the MOSS application for greater than 25 users and

a generally better level of performance with the web application. The Xen documen-

tation indicates that the sEDF scheduler should not be used because there are plans

to remove it from the standard Xen distribution, a fate which the borrowed virtual

time CPU scheduler has already faced. Through the course of this research the case

has been made for not only the use of sEDF, but the persistence of the option to use

it as part of the standard distribution.

To further demonstrate the significance of the results obtained, suggestions for

future work are provided in the next chapter. Specific areas where this work can be

expanded and augmented are highlighted as well as how the lessons learned through

the performance study can be applied.

58

Chapter 6

Future Work

“Tell me and I forget. Teach me and I remember. Involve me and I learn.”

—Benjamin Franklin

This research produced a set of three workloads that can be used to evaluate

the performance of a virtual environment. In the case of this study, the workloads

were used to evaluate the performance of various CPU scheduler configurations of

the Xen hypervisor. Given that this framework now exists it can be expanded and

implemented on other hypervisors. This opens the door to a nearly endless amount

of follow-up work.

Within the Xen hypervisor, there are many more combinations of CPU schedul-

ing configurations that can be evaluated. This work only looked at a very small

subset. However, the results obtained can provide a baseline from which inferences

can be made about other scheduling configurations that have the potential to increase

throughput and decrease response time. A similar performance study can then be

conducted to see if it is possible to obtain better levels of performance than those

found in this study.

An open question that arose from this work was the cause of the variability of

the “best” scheduling algorithm configuration based on user load. Further work is

required to determine the root cause of this phenomenon as none of the data collected

points to a clear cause of the trend. The insertion of some type of OS monitoring

tool into each VM could possibly provide the feedback needed to address this question.

Another open question is the effect of the underlying storage system upon VM

performance. The count of blocked time, highlighted in the previous chapter, does

give a sense of the amount of time that was related to disk I/O. The xenmon tool

was supposed to output I/O counts, but for whatever reason it did not. It may turn

out that greater throughput of the storage system has an effect on the performance

of the CPU scheduling algorithms used.

Due to timing restraints of this work only one client machine was able to be uti-

lized for the simulation of users of each workload. However, each of the tools used

supports execution in a distributed mode. An extension of this work implemented

using multiple test clients is yet another area of future research.

Automatic tuning of the Xen hypervisor CPU scheduler is yet another area of

future work. If the results obtained in this study were expanded and augmented they

could be used to construct a tuning algorithm that would be capable of reconfiguring

the CPU scheduler to maximize performance. Such a system would prove valuable

and ensure high utilization of the CPU.

A final point of research that could be conducted would be a verification of the

methodologies used in this study. This is not to suggest that these findings are in-

valid, rather to say that a confirmation of the results would further strengthen the

60

claims that were made. The notion of repeated research is not uncommon and was

performed in the case of Xen [3].

This chapter has addressed several key areas of future work based the results

obtained in this study. As hardware continues to decrease in price while increasing

in speed, there will surely be an even larger move to consolidate physical machines

through the use of virtualization. The continued success of virtualization will rely

on research like this that asks tough questions about performance and provides a

carefully constructed empirical study to determine the answer.

61

Appendix A

Xen Commands

This appendix is meant to serve as a guide to using Xen. Various tasks that were

necessary to conduct the building of the Xen environment are outlined as well as

several management tasks.

A.1 Xen Installation

Ubuntu was used as the base operating system primarily for the availability of pre-

compiled packages. Thus, the installation was facilitated by the aptitude package

manager. The package manager automatically resolves all of the dependencies of the

packages that it installs. The following command was used to install the base Xen

Server package and the optional GUI interface:

sudo apt-get install ubuntu-xen-server virt-manager

The command downloads all of the required Xen files and dependencies. A new

kernel image is created that is set to load the Xen kernel module to facilitate the

running of virtual machines. The virt-manger program was also installed to allow

for a GUI to create and run virtual machines.

A.2 Creating a VM

To create virtual machines for testing the virt-manger tool was used. The GUI

provides a set of configuration options and then creates a VM. There are additional

tools included with the xm command that facilitate manually creating a VM.

A.3 Cloning a VM

Several of the base OS installs were greatly aided by the clone command. A template

of a base operating system with updates installed and configured was cloned to create

new VMs. The ability to clone VMs dramatically reduced the time required to create

each workload and ensured a standard configuration across VMs in each workload.

Clone functionality is provided via the xm command. The syntax of the command is

demonstrated below.

xm clone source_vm detination_location

A.4 Increase the Number of Loopback Devices

Xen VMs can be setup to use flat files as disk images. When this disk configuration is

used, the OS creates a loopback device to mount the disk image to the file system. By

default the Ubuntu Xen install only has 4 loopback devices enabled, which restricts

the number of VMs that can be run to 4. A simple edition of the following to the

/etc/modules file (if the file does not exist, it will need to be created) will increase

the number of loopback devices to xx.

add loop max_loop=xx

The number of available loopback devices can be seen by using the ls command.

ls -l /dev/loop*

63

A.5 Set the Xen CPU Scheduler Type

The Xen scheduler can be changed by setting the sched kernel boot parameter. By

default the credit scheduler is used for CPU scheduling, but setting sched=sedf will

specify that the sEDF CPU scheduler should be used. The easiest way to implement

this parameter is to copy the existing Xen boot menu entry in the menu.lst file,

which is typically located in the /boot/grub folder. The file will need to be edited

by the root user account. An example of the modified boot entry is provided below.

title Xen 3.3 / Ubuntu 8.04.3 LTS, kernel 2.6.24-26-xen sEDF

root (hd1,0)

kernel /boot/xen-3.3.gz sched=sedf

module /boot/vmlinuz-2.6.24-26-xen root=UUID=e8c13945-5158

module /boot/initrd.img-2.6.24-26-xen

quiet

A.6 Determining the Scheduler Configuration

Xen has 2 commands built into the xm command that allows the scheduler parameters

to be seen. For the credit scheduler the command is xm sched-credit and for

the sedf scheduler the command is xm sched-sedf (sample output can be seen in

Figure A.1.

A.7 Xentop

Xen has a built in top command called xentop. The command gives CPU and

memory utilization like the typical top command, but with a listing of VMs. An

example of the command is given in FigureA.2.

64

Figure A.1: sched-credit Command. An example of the xm sched-credit
command output.

Figure A.2: xentop Command. An example of the xentop command output.

A.8 Viewing the Running Virtual Machines

A list of running virtual machines can be viewed using the xm list command. A

sample of the output is provided in Figure A.3.

65

Figure A.3: xm list Command. An example of the xm list command output.

66

Appendix B

Tools

This appendix was created to provide a description of all the tools that were used

in this research and summarize their functionality. Where appropriate, sample com-

mands of each tool are given.

B.1 JMeter

JMeter is an a performance benchmarking tool for websites that is part of the Apache

project. The tool is written in Java. It allows for simultaneous connections to a

webserver to be initialized by creating a new thread for each connection. JMeter was

the tool of choice for benchmarking MOSS due to its ability to run a proxy server to

record web browser events. Once the events were recorded through the proxy server,

they were added to a test suite.

B.2 LoadGen

LoadGen is a Microsoft Exchange performance testing tool. It was created to allow

system administrators to performance test new Exchange installations to determine

if they can handle the anticipated load of a new environment that is being deployed.

LoadGen initiates a series of client connections to the Exchange server and performs

common tasks, such as sending emails, logging in and out, creating calendar events,

etc.

B.3 Pageant

Pageant is an open source tool that allows for the creating of public authentication

keys for putty and plink ssh sessions [13]. This tool allowed a key to be created

so that the root password did not need to be entered in clear text when scripting

the experimentation. Once a share key is created with the program, it is added to

the authorized keys file on the server. Once the key is added a password is not

needed to ssh into the server.

B.4 Plink

Plink is an open source command line interface to PuTTY, a Windows Telnet and

SSH client [13]. Plink was used to execute commands on the Xen server from the

Windows test machine. The tool can be accessed at the project webpage.

B.5 Ubuntu

Ubuntu is an open-source Linux distribution based on Debian Linux. It features a

robust package manager system, called aptitude, that allows for the easy installation

of new software by automatically resolving dependencies. For this reason, Ubuntu

was chosen for this research. Ubuntu 9.04 Server Edition was the primary OS on the

Xen server and each of the web application and VPS application workloads.

68

B.6 virt-manager

Virt-manager is an open source monitoring and management GUI for virtual ma-

chines. It was used to aid in the installation and maintenance of the virtual machines

used in the research.

B.7 Xenmon

Xenmon is a performance monitoring tool for Xen. Xenmon reports I/O and CPU

scheduling information. It can run interactively or log data directly to a file. Xenmon

was crucial in measuring the effectiveness of each CPU scheduler and configuration

used during the research. The tool is part of the Xen installation. It can be invoked

using the following command:

xenmon.py -p filename_prefix -i logging_interval

-t time_to_log_for -n

The example above specifies a prefix to the output file name, the interval at which

information is written to the log file (i), the total time that xenmon is run for(t),

and that no information should be output to the terminal (n). A separate output file

is created for each domain.

B.8 Xen

Xen is an open source hypervisor. Xen was used because to has the ability to use

different CPU scheduling algorithms and allows the user to configure parameters for

each scheduling algorithm.

69

Appendix C

Source Code

C.1 Test Configuration Files

C.1.1 Web Application JMeter Configuration File

1 <?xml ve r s i on =”1.0” encoding=”UTF−8”?>

2 <jmeterTestPlan ve r s i on =”1.2” p r op e r t i e s =”2.1”>

3 <hashTree>

4 <TestPlan g u i c l a s s=”TestPlanGui” t e s t c l a s s=”TestPlan” testname=”Test

” enabled=”true”>

5 <s t r ingProp name=”TestPlan . comments”></str ingProp>

6 <boolProp name=”TestPlan . funct iona l mode”> f a l s e </boolProp>

7 <boolProp name=”TestPlan . s e r i a l i z e t h r e a d g r o up s”> f a l s e </boolProp>

8 <elementProp name=”TestPlan . u s e r d e f i n e d v a r i a b l e s ” elementType=”

Arguments” g u i c l a s s=”ArgumentsPanel” t e s t c l a s s=”Arguments”

testname=”User Def ined Var iab l e s ” enabled=”true”>

9 <c o l l e c t i onProp name=”Arguments . arguments”/>

10 </elementProp>

11 <s t r ingProp name=”TestPlan . u s e r d e f i n e c l a s s p a t h”></str ingProp>

12 </TestPlan>

13 <hashTree>

14 <ThreadGroup g u i c l a s s=”ThreadGroupGui” t e s t c l a s s=”ThreadGroup”

testname=”Thread Group” enabled=”true”>

15 <elementProp name=”ThreadGroup . ma in con t r o l l e r ” elementType=”

LoopContro l l e r ” g u i c l a s s=”LoopControlPanel ” t e s t c l a s s=”

LoopContro l l e r ” testname=”Loop Cont r o l l e r ” enabled=”true”>

16 <boolProp name=”LoopContro l l e r . c on t i nu e f o r e v e r”> f a l s e </

boolProp>

17 <intProp name=”LoopContro l l e r . l oops”>−1</intProp>

18 </elementProp>

19 <s t r ingProp name=”ThreadGroup . num threads”>25</str ingProp>

20 <s t r ingProp name=”ThreadGroup . ramp time”>1</str ingProp>

21 <longProp name=”ThreadGroup . s t a r t t ime ”>1269900472000</ longProp>

22 <longProp name=”ThreadGroup . end time ”>1269900472000</ longProp>

23 <boolProp name=”ThreadGroup . s chedu l e r”>true</boolProp>

24 <s t r ingProp name=”ThreadGroup . on sample e r ro r”>continue</

str ingProp>

25 <s t r ingProp name=”ThreadGroup . durat ion”>1800</ str ingProp>

26 <s t r ingProp name=”ThreadGroup . de lay”></str ingProp>

27 </ThreadGroup>

28 <hashTree>

29 <ConfigTestElement g u i c l a s s=”HttpDefaultsGui ” t e s t c l a s s=”

ConfigTestElement ” testname=”HTTP Request De fau l t s ” enabled

=”true”>

30 <elementProp name=”HTTPsampler . Arguments” elementType=”

Arguments” g u i c l a s s=”HTTPArgumentsPanel” t e s t c l a s s=”

Arguments” testname=”User Def ined Var iab l e s ” enabled=”true

”>

31 <c o l l e c t i onProp name=”Arguments . arguments”/>

32 </elementProp>

33 <s t r ingProp name=”HTTPSampler . domain”></str ingProp>

34 <s t r ingProp name=”HTTPSampler . port”>80</str ingProp>

35 <s t r ingProp name=”HTTPSampler . connect t imeout”></str ingProp>

71

36 <s t r ingProp name=”HTTPSampler . r e sponse t imeout”></str ingProp>

37 <s t r ingProp name=”HTTPSampler . p ro to co l”></str ingProp>

38 <s t r ingProp name=”HTTPSampler . contentEncoding”></str ingProp>

39 <s t r ingProp name=”HTTPSampler . path”></str ingProp>

40 </ConfigTestElement>

41 <hashTree/>

42 <HTTPSampler g u i c l a s s=”HttpTestSampleGui” t e s t c l a s s=”HTTPSampler

” testname=”HTTP Request ” enabled=”true”>

43 <elementProp name=”HTTPsampler . Arguments” elementType=”

Arguments” g u i c l a s s=”HTTPArgumentsPanel” t e s t c l a s s=”

Arguments” enabled=”true”>

44 <c o l l e c t i onProp name=”Arguments . arguments”/>

45 </elementProp>

46 <s t r ingProp name=”HTTPSampler . domain”>10.0.0.20</ str ingProp>

47 <s t r ingProp name=”HTTPSampler . port”></str ingProp>

48 <s t r ingProp name=”HTTPSampler . connect t imeout”></str ingProp>

49 <s t r ingProp name=”HTTPSampler . r e sponse t imeout”></str ingProp>

50 <s t r ingProp name=”HTTPSampler . p ro to co l”></str ingProp>

51 <s t r ingProp name=”HTTPSampler . contentEncoding”></str ingProp>

52 <s t r ingProp name=”HTTPSampler . path”>/index . php</str ingProp>

53 <s t r ingProp name=”HTTPSampler . method”>GET</str ingProp>

54 <boolProp name=”HTTPSampler . f o l l o w r e d i r e c t s ”> f a l s e </boolProp>

55 <boolProp name=”HTTPSampler . a u t o r e d i r e c t s ”>true</boolProp>

56 <boolProp name=”HTTPSampler . u s e k e epa l i v e”>true</boolProp>

57 <boolProp name=”HTTPSampler .DO MULTIPART POST”> f a l s e </boolProp

>

58 <s t r ingProp name=”HTTPSampler .FILE NAME”></str ingProp>

59 <s t r ingProp name=”HTTPSampler . FILE FIELD”></str ingProp>

60 <s t r ingProp name=”HTTPSampler . mimetype”></str ingProp>

61 <boolProp name=”HTTPSampler . monitor”> f a l s e </boolProp>

62 <s t r ingProp name=”HTTPSampler . embedded ur l re”></str ingProp>

63 </HTTPSampler>

72

64 <hashTree/>

65 <Resu l tCo l l e c t o r g u i c l a s s=”GraphAccumVisualizer ” t e s t c l a s s=”

Re su l tCo l l e c t o r ” testname=”Graph Ful l Resu l t s ” enabled=”true

”>

66 <boolProp name=”Resu l tCo l l e c t o r . e r r o r l o g g i n g”> f a l s e </boolProp

>

67 <objProp>

68 <name>saveConf ig</name>

69 <value c l a s s=”SampleSaveConf igurat ion”>

70 <time>true</time>

71 <l a tency>true</latency>

72 <timestamp>true</timestamp>

73 <succes s>true</succes s>

74 <l abe l>true</l abe l>

75 <code>true</code>

76 <message>true</message>

77 <threadName>true</threadName>

78 <dataType>true</dataType>

79 <encoding>f a l s e </encoding>

80 <a s s e r t i on s>true</a s s e r t i o n s>

81 <sub r e su l t s>true</subr e su l t s>

82 <responseData>f a l s e </responseData>

83 <samplerData>f a l s e </samplerData>

84 <xml>true</xml>

85 <f ie ldNames>f a l s e </fie ldNames>

86 <responseHeaders>f a l s e </responseHeaders>

87 <requestHeaders>f a l s e </requestHeaders>

88 <responseDataOnError>f a l s e </responseDataOnError>

89 <saveAsse r t ionResu l t sFa i lu reMessage>f a l s e </

saveAsse r t i onResu l t sFa i lu reMessage>

90 <asse r t ionsResu l t sToSave>0</asse r t ionsResu l t sToSave>

91 <bytes>true</bytes>

73

92 </value>

93 </objProp>

94 <s t r ingProp name=”f i l ename”>C:\Documents and Se t t i n g s \

Administrator .DOMAIN\Desktop\web app sc r ip t s \ t e s t r e s u l t s .

j t l </str ingProp>

95 <boolProp name=”Resu l tCo l l e c t o r . s u c c e s s o n l y l o g g i n g”>true</

boolProp>

96 </Resu l tCo l l e c to r>

97 <hashTree/>

98 </hashTree>

99 </hashTree>

100 </hashTree>

101 </jmeterTestPlan>

C.2 Test Scripts

C.2.1 Web Application sEDF Tests Powershell Script

1 # James Devine

2 #

3 # web t e s t s ed f . ps1 − power she l l s c r i p t to run the web app l i c a t i o n

workload with var i ous

4 # con f i g u r a t i o n s o f the s ed f s chedu l e r

5 #

6

7 $use r s=@(25 , 50 , 100 , 500 , 800)

8

9 #loop through each use r l oad

10 f o r ($k=0; $k − l e $use r s . Length − 1 ; $k++)

11

12

13 {

74

14 $userNum=$use r s [$k]

15

16 #loop through schedu l e r c on f i g u r a t i o n s

17 $dom0 s l i c e s=@(15 , 2 . 5 , 1 . 6 , 250 , 160)

18 $dom0 periods=@(20 , 10 , 10 , 1000 , 1000)

19 $domU periods=@(100 , 10 , 10 , 1000 , 1000)

20 $ t e s t s l i c e s=@(20 , 2 . 5 , 2 . 8 , 250 , 280)

21

22 f o r ($ j =0; $ j − l e $ t e s t s l i c e s . length −1; $ j++)

23 {

24 #se t the per iod and s l i c e v a r i a b l e s

25 $domU period=$domU periods [$ j]

26 $dom0 s l i c e=$dom0 s l i c e s [$ j]

27 $dom0 period= $dom0 periods [$ j]

28 $ t e s t s l i c e=$ t e s t s l i c e s [$ j]

29

30 #se t the s chedu l e r pe r i od s and s l i c e s

31 p l i nk − l root − i ”C:\Documents and Se t t i n g s \Administrator .DOMAIN

\Desktop\key . ppk” 1 0 . 0 . 0 . 1 ”xm sched−s ed f Apache Server −p

$domU period −s $ t e s t s l i c e ”

32 p l ink − l root − i ”C:\Documents and Se t t i n g s \Administrator .DOMAIN

\Desktop\key . ppk” 1 0 . 0 . 0 . 1 ”xm sched−s ed f NFS Server −p

$domU period −s $ t e s t s l i c e ”

33 p l ink − l root − i ”C:\Documents and Se t t i n g s \Administrator .DOMAIN

\Desktop\key . ppk” 1 0 . 0 . 0 . 1 ”xm sched−s ed f SQL Server −p

$domU period −s $ t e s t s l i c e ”

34 p l ink − l root − i ”C:\Documents and Se t t i n g s \Administrator .DOMAIN

\Desktop\key . ppk” 1 0 . 0 . 0 . 1 ”xm sched−s ed f Domain−0 −p

$dom0 period −s $dom0 s l i c e ”

35 p l ink − l root − i ”C:\Documents and Se t t i n g s \Administrator .DOMAIN

\Desktop\key . ppk” 1 0 . 0 . 0 . 1 ”xm sched−s ed f ”

36

75

37 #loop 5 t imes f o r each user load & schedu l e r c on f i g

38 $ i = 1

39 whi l e ($ i − l e 5)

40 {

41 #setup the database

42 s ta r t−job ”C:\Documents and Se t t i n g s \Administrator .DOMAIN\

Desktop\web app sc r ip t s \ setup . ps1”

43

44 $opt ions=”−n −t 1800 − i 1000 −p sedf domUperiod−$domUperiod−

TEST−s l i c e −$ t e s t s l i c e −users−$userNum−app−$ i ”

45 #run the experiment

46 echo ”Running xenmon with the opt ions : $opt ions ”

47 $RESULT = sta r t−job ”C:\Documents and Se t t i n g s \Administrator

.DOMAIN\Desktop\web app sc r ip t s \ jmeter−$userNum . ps1”

48 #run xenmon

49 $out = p l ink − l root − i ”C:\Documents and Se t t i n g s \

Administrator .DOMAIN\Desktop\key . ppk” 1 0 . 0 . 0 . 1 ”xenmon .

py $opt ions ”

50 #wait f o r the cur rent job to f i n i s h

51 wait−job $RESULT

52

53 #move and rename the r e s u l t s f i l e

54 mv ”C:\Documents and Se t t i n g s \Administrator .DOMAIN\Desktop\

web app sc r ip t s \ t e s t r e s u l t s . j t l ” ”C:\Documents and

Se t t i n g s \Administrator .DOMAIN\Desktop\web app sedf \

s e d f s l i c e −$ t e s t s l i c e −users−$userNum−app−$ i . j t l ”

55

56 #teardown the database

57 s ta r t−job ”C:\Documents and Se t t i n g s \Administrator .DOMAIN\

Desktop\web app sc r ip t s \ teardown . ps1”

58

59 #increment the counter

76

60 $ i++

61 }

62 }

63 }

C.2.2 Web Application Credit Tests Powershell Script

1

2

3 $use r s=@(50 , 100 , 500 , 800)

4

5 #loop through each use r l oad

6 f o r ($k=0; $k − l e $use r s . Length − 1 ; $k++)

7 {

8 $userNum=$use r s [$k]

9

10 #loop through schedu l e r c on f i g u r a t i o n s

11 $weights=@(256 , 512 , 1024 , 2048 , 4096)

12 #$dom0 s l i c e s=@(15 , 2 , 1 . 8 , 200 , 175)

13 #$dom0 periods=@(20 , 10 , 10 , 1000 , 1000)

14 #$domU periods=@(100 , 10 , 10 , 1000 , 1000)

15 #$ t e s t s l i c e s=@(20 , 2 , 2 . 8 , 200 , 175)

16 #$ o t h e r s l i c e s=@(20 , 2 , 1 . 8 , 200 , 175)

17

18 f o r ($ j =0; $ j − l e $weights . length −1; $ j++)

19 {

20 $weight=$weights [$ j]

21 #$domU period=$domU periods [$ j]

22 #$dom0 s l i c e=$dom0 s l i c e s [$ j]

23 #$dom0 period= $dom0 periods [$ j]

24 #$ e x c h s l i c e=$ e x c h s l i c e s [$ j]

25 #$ o t h e r s l i c e=$ o t h e r s l i c e s [$ j]

77

26

27 #se t the s chedu l e r weight

28 p l ink − l root − i ”C:\Documents and Se t t i n g s \Administrator .DOMAIN

\Desktop\key . ppk” 1 0 . 0 . 0 . 1 ”xm sched−c r e d i t −d NFS Server −w

$weight ”

29 p l ink − l root − i ”C:\Documents and Se t t i n g s \Administrator .DOMAIN

\Desktop\key . ppk” 1 0 . 0 . 0 . 1 ”xm sched−c r e d i t −d SQL Server −w

$weight ”

30 p l ink − l root − i ”C:\Documents and Se t t i n g s \Administrator .DOMAIN

\Desktop\key . ppk” 1 0 . 0 . 0 . 1 ”xm sched−c r e d i t −d Apache Server

−w $weight ”

31 #p l ink − l root − i ”C:\Documents and Se t t i n g s \Administrator .

DOMAIN\Desktop\key . ppk” 1 0 . 0 . 0 . 1 ”xm sched−s ed f EXCH −p

$domU period −s $ e x c h s l i c e ”

32 #p l ink − l root − i ”C:\Documents and Se t t i n g s \Administrator .

DOMAIN\Desktop\key . ppk” 1 0 . 0 . 0 . 1 ”xm sched−s ed f AD −p

$domU period −s $ o t h e r s l i c e ”

33 #p l ink − l root − i ”C:\Documents and Se t t i n g s \Administrator .

DOMAIN\Desktop\key . ppk” 1 0 . 0 . 0 . 1 ”xm sched−s ed f MSSQL −p

$domU period −s $ t e s t s l i c e ”

34 #p l ink − l root − i ”C:\Documents and Se t t i n g s \Administrator .

DOMAIN\Desktop\key . ppk” 1 0 . 0 . 0 . 1 ”xm sched−s ed f MOSS −p

$domU period −s $ t e s t s l i c e ”

35 #p l ink − l root − i ”C:\Documents and Se t t i n g s \Administrator .

DOMAIN\Desktop\key . ppk” 1 0 . 0 . 0 . 1 ”xm sched−s ed f Domain−0 −p

$dom0 period −s $dom0 s l i c e ”

36 #p l ink − l root − i ”C:\Documents and Se t t i n g s \Administrator .

DOMAIN\Desktop\key . ppk” 1 0 . 0 . 0 . 1 ”xm sched−s ed f ”

37

38 #loop 5 t imes f o r each user load & schedu l e r c on f i g

39 $ i = 1

40 whi l e ($ i − l e 5)

78

41 {

42 #setup the database

43 s ta r t−job ”C:\Documents and Se t t i n g s \Administrator .DOMAIN\

Desktop\web app sc r ip t s \ setup . ps1”

44

45 $opt ions=”−n −t 1800 − i 1000 −p c r ed i t we i gh t−$weight−users−

$userNum−web app−$ i ”

46 #$opt ions=”−n −t 1800 − i 1000 −p sedf domUperiod−$domUperiod

−EXCH−s l i c e −$ ex ch s l i c e−users−$userNum−exchange−$ i ”

47 #run the experiment

48 echo ”Running xenmon with the opt ions : $opt ions ”

49 $RESULT = sta r t−job ”C:\Documents and Se t t i n g s \Administrator

.DOMAIN\Desktop\web app sc r ip t s \ jmeter−$userNum . ps1”

50 #run xenmon

51 $out = p l ink − l root − i ”C:\Documents and Se t t i n g s \

Administrator .DOMAIN\Desktop\key . ppk” 1 0 . 0 . 0 . 1 ”xenmon .

py $opt ions ”

52 #wait f o r the cur rent job to f i n i s h

53 wait−job $RESULT

54

55 #move and rename the r e s u l t s f i l e

56 mv ”C:\Documents and Se t t i n g s \Administrator .DOMAIN\Desktop\

web app sc r ip t s \ t e s t r e s u l t s . j t l ” ”C:\Documents and

Se t t i n g s \Administrator .DOMAIN\Desktop\web app cred i t \

c r ed i t $we igh t−users−$userNum−app−$ i . j t l ”

57

58 #teardown the database

59 s ta r t−job ”C:\Documents and Se t t i n g s \Administrator .DOMAIN\

Desktop\web app sc r ip t s \ teardown . ps1”

60

61 #increment the counter

62 $ i++

79

63 }

64 }

65 }

C.3 Web Application Source Code

C.3.1 Main Website

1 <?php

2 // inc l ude the con f i g f i l e

3 include (” c on f i g . php”) ;

4

5 // s t a r t a new se s s i on

6 session start () ;

7 ?>

8 <!DOCTYPE html PUBLIC ”−//W3C//DTD XHTML 1.0 Tran s i t i ona l //EN”

9 ”http ://www.w3 . org /TR/xhtml1/DTD/xhtml1−t r a n s i t i o n a l . dtd”>

10 <html xmlns=”http ://www.w3 . org /1999/ xhtml”>

11 <head>

12 <meta http−equiv=”Content−Type” content=” text /html ; cha r s e t=utf−8” />

13 <t i t l e >Web Appl i ca t ion Benchmark</ t i t l e >

14 <l ink hr e f=” s t y l e . c s s ” r e l=” s t y l e s h e e t ” type=” text / c s s ” />

15 <s c r i p t type=” text / j a v a s c r i p t ”>

16 <!−−

17 func t i on MM swapImgRestore () { //v3 .0

18 var i , x , a=document .MM sr ;

19 for (i =0;a&&i<a . l ength&&(x=a [i])&&x . oSrc ; i++) x . s r c=x . oSrc ;

20 }

21 func t i on MM preloadImages () { //v3 .0

22 var d=document ; i f (d . images) { i f (! d .MM p) d .MM p=new Array () ;

23 var i , j=d .MM p. length , a=MM preloadImages . arguments ;

24 for (i =0; i<a . l ength ; i++)

80

25 i f (a [i] . indexOf (”#”) !=0){ d .MM p[j]=new Image ;

26 d .MM p[j ++]. s r c=a [i] ; } }

27 }

28

29 func t i on MM findObj (n , d) { //v4 .01

30 var p , i , x ; i f (! d) d=document ;

31 i f ((p=n . indexOf (”?”))>0&&parent . frames . l ength) {

32 d=parent . frames [n . sub s t r i ng (p+1)] . document ;

33 n=n . sub s t r i ng (0 , p) ;}

34 i f (! (x=d [n])&&d . a l l) x=d . a l l [n] ;

35 for (i =0; ! x&&i<d . forms . l ength ; i++) x=d . forms [i] [n] ;

36 for (i =0; ! x&&d . l a y e r s&&i<d . l a y e r s . l ength ; i++)

37 x=MM findObj (n , d . l a y e r s [i] . document) ;

38 i f (! x && d . getElementById) x=d . getElementById (n) ; r e turn x ;

39 }

40

41 func t i on MM swapImage () { //v3 .0

42 var i , j =0,x , a=MM swapImage . arguments ;

43 document .MM sr=new Array ;

44 for (i =0; i<(a . length −2) ; i+=3)

45 i f ((x=MM findObj (a [i])) != nu l l)

46 {document .MM sr [j++]=x ;

47 i f (! x . oSrc) x . oSrc=x . s r c ; x . s r c=a [i +2] ;}

48 }

49 //−−>

50 </s c r i p t>

51 </head>

52

53 <body c l a s s=”oneColFixCtr ”onLoad=

54 ”MM preloadImages (’ image/market ovr . jpg ’ ,

55 ’ image/brand ovr . jpg ’ , ’ image/home ovr . jpg ’ ,

56 ’ image/promote ovr . jpg ’ , ’ image/ c a t a l o g s ov r . jpg ’ ,

81

57 ’ image/ about ovr . jpg ’ , ’ image/ b log ovr . jpg ’) ,

58 ’ image/ t e s t imon i a l s o v r . jpg ’ , ’ image/ contac t ovr . jpg ’ ”>

59

60 <div id=” conta ine r ”>

61 <?php include ”header . php”?>

62 <div id=”home body”>

63 <?php

64 // s imu la t e a user s i gn in query //

65

66 // genera te a random number

67 $rand=rand (0 , 4) ;

68

69 i f ($rand==0)

70 $usern=”user1@fakehost . com” ;

71 e l s e i f ($rand==1)

72 $usern=”user2@fakehost . com” ;

73 e l s e i f ($rand==2)

74 $usern=”user3@fakehost . com” ;

75 e l s e i f ($rand==3)

76 $usern=”user4@fakehost . com” ;

77 e l s e i f ($rand==4)

78 $usern=”user5@fakehost . com” ;

79

80 // s e t the password

81 $password1=”password” ;

82

83 // f i nd the user in the database and check password

84 // connect to the database

85 $conn = mysql connect ($host , $user , $password) or

86 die (’ Error connect ing to mysql ’) ;

87 mysql select db ($database) ;

88

82

89 // b u i l d the SQL query

90 $ sq l = ”SELECT ∗” .

91 ”FROM use r s ” .

92 ”WHERE emai l = ’ $usern ’ AND” .

93 ”password = MD5(’ $password1 ’) ” ;

94

95 // execu te the SQL query

96 $ r e s u l t = mysql query ($ sq l) or die (’Query f a i l e d . ’

97 .

mysql error

()

)

;

98

99 // i f t h e r e i s a r e s u l t the user i s in the database

100 //and has prov ided a co r r e c t password

101 i f (mysql num rows($ r e s u l t) == 1)

102 {

103 // s e t the s e s s i on

104 $ SESSION [’ l o gg ed i n ’] = true ;

105 }

106

107 // s e t the username

108 $ SESSION [’ use r Id ’]=$usern ;

109

110 // l o g the user ’ s v i s i t //

111 // b u i l d the SQL query

112 $ sq l = ”INSERT INTO log (user) VALUES(’ $usern ’) ” ;

113

114 // d i sconnec t from the database

83

115 mysq l c l o s e ($conn) ;

116

117 ?>

118

119 <?php

120 // code to load content from the database //

121 $usern=$ SESSION [’ use r Id ’] ;

122 print ”Welcome to a benchmarking t e s t webs i te $usern” ;

123

124 // crea t e a database connect ion

125 $conn = mysql connect ($host , $user , $password) or

126 die (’ Error connect ing to mysql ’) ;

127 mysql select db ($database) ;

128

129 // b u i l d query

130 $ sq l = ”SELECT ∗” .

131 ”FROM content ” .

132 ”WHERE page = ’home ’ ” ;

133

134 // execu te the query and save the r e s u l t

135 $ r e s u l t = mysql query ($ sq l) or die (’Query f a i l e d . ’ .

136 mysql error

()

)

;

137 $row = mysq l f e t ch a r ray ($ r e s u l t) or die (mysql error ()) ;

138

139 // ge t t r i d o f s l a s h e s used to save the html in the db

140 $html=stripslashes ($row [1]) ;

141

142 // c l o s e the database connect ion

84

143 mysq l c l o s e ($conn) ;

144 print ”$html” ;

145 ?>

146

147 </div>

148

149 <!−− end #conta iner −−>

150 <?php include ” f o o t e r . html” ; ?>

151 <!−− end #conta iner −−>

152 </div>

153 </body>

154 </html>

C.3.2 SQL Setup Script

1 <?php

2 include (” c on f i g . php”) ;

3

4 // crea t e database connect ion

5 $conn = mysql connect ($host , $user , $password) or die (’ Error

connect ing to mysql ’) ;

6

7 // crea t e the db

8 $ sq l=”CREATE DATABASE $database ” ;

9 mysql query ($ sq l) or die (’Query f a i l e d . ’ . mysql error ()) ;

10

11 // s e l e c t the database

12 mysql select db ($database) ;

13

14 // crea t e the content t a b l e

15 $ sq l=”CREATE TABLE content (

16 page varchar (20) NOT NULL,

85

17 html l ong t ex t NOT NULL,

18 PRIMARY KEY (page)

19) ENGINE=MyISAM DEFAULT CHARSET=ut f8 ; ” ;

20 mysql query ($ sq l) or die (’Query f a i l e d . ’ . mysql error ()) ;

21

22 // crea t e the users t a b l e

23 $ sq l=”CREATE TABLE use r s (

24 emai l varchar (50) NOT NULL,

25 password varchar (32) NOT NULL,

26 Name mediumtext NOT NULL,

27 Address mediumtext NOT NULL,

28 Date Joined timestamp NOT NULL de f au l t CURRENTTIMESTAMP

,

29 PRIMARY KEY (emai l)

30) ENGINE=MyISAM DEFAULT CHARSET=ut f8 ; ” ;

31 mysql query ($ sq l) or die (’Query f a i l e d . ’ . mysql error ()) ;

32

33 // crea t e the l o g t a b l e

34 $ sq l=”CREATE TABLE log (

35 id i n t NOT NULL auto increment ,

36 ac c e s s t ime timestamp NOT NULL de f au l t CURRENTTIMESTAMP

,

37 user varchar (50) NOT NULL,

38 PRIMARY KEY (id)

39) ENGINE=MyISAM DEFAULT CHARSET=ut f8 AUTO INCREMENT=1 ; ”

;

40 mysql query ($ sq l) or die (’Query f a i l e d . ’ . mysql error ()) ;

41

42 //add user s

43 for ($ i =0; $i <5; $ i++)

44 {

45 $user=” use r$ i@fakehos t . com” ;

86

46

47 // b u i l d the query

48 $ sq l=”INSERT INTO use r s (

49 emai l ,

50 password ,

51 Name ,

52 Address ,

53 Date Joined

54)

55 VALUES (

56 ’ $user@ ’ , MD5(’ password ’) , ’ Fake User $ i ’ ,

’123 Fake St #$ i

57 Meadvi l l e PA, 16335 ’ , CURRENTTIMESTAMP) ; ” ;

58 // execu te the query

59 mysql query ($ sq l) or die (’Query f a i l e d . ’ . mysql error

()) ;

60 }

61

62 // the html s t r i n g

63 // adds l a she s () i s used so the html fo rmat t ing does not make

MySQL angry

64 $html=addslashes (”<p>This i s some html from the db.</p> <p>I t ’ s

r e a l l y good

65 news that t h i s html i s v i s a b l e . I t i s be ing loaded from

the MySQL database .</p>

66 <h1>Here i s a tab le</h1><t ab l e border=’1’>< tr><td>

Column1</td><td>Column2</td></tr>

67 <tr><td>Some</td><td>Text</td></tr><tr><td>Some</td><td>

More text</td></tr>

68 <tr><td>The</td><td>Goals</td></tr><tr><td>Is</td><td>To

</td></tr>

87

69 <tr><td>Load</td><td>a r e spec tab l e </td></tr><tr><td>

amount of</td><td>text</td></tr>

70 <tr><td>from</td><td>the</td></tr><tr><td>MySQL</td><td>

database</td></tr></tab le>

71 <h2>This i s a heading 2 format</h2>

72 <h3>This i s a heading 3 format</h3>

73 <h4>This i s a heading 4 format</h4>

74 <h5>This i s a heading 5 format</h5>

75 This i s the end o f the html text that was loaded from

the database ”) ;

76

77 //add html to the content database

78 $ sq l=”INSERT INTO content (

79 page ,

80 html

81)

82 VALUES(

83 ’home ’ , ’ $html ’) ; ” ;

84 // execu te the query

85 mysql query ($ sq l) or die (’Query f a i l e d . ’ . mysql error ()) ;

86

87 // c l o s e the database connect ion

88 mysq l c l o s e ($conn) ;

89

90 echo ”The database i s a l l setup ! ” ;

91

92 ?>

C.3.3 Powershell Script to Execute the SQL Setup

1 # James Devine ’ s Sen ior Thes i s

2 #

88

3 # setup . ps1 − A power she l l s c r i p t to launch In t e rn e t

4 # Explorer to execute the SQL setup s c r i p t

5 #

6

7

8 cd ”C:\Program F i l e s \ I n t e rn e t Explorer ”

9

10 #point i e to the setup s c r i p t

11 . / i e x p l o r e . exe 1 0 . 0 . 0 . 2 0 / setup . php

12

13 #s l e ep f o r one second

14 s l e ep 1

15

16 #k i l l i n t e r n e t exp l o r e r

17 get−proce s s i e x p l o r e | stop−proce s s

C.3.4 SQL Teardown Script

1 <?php

2 include (” c on f i g . php”) ;

3

4 // connect to the s e r v e r

5 $conn = mysql connect ($host , $user , $password) or die (’ Error

connect ing to mysql ’) ;

6

7 // b u i l d the query

8 $ sq l = ”DROP database $database ; ” ;

9

10 // execu te the query

11 mysql query ($ sq l) or die (’Query f a i l e d . ’ . mysql error ()) ;

12

13 echo ”database dropped” ;

89

14 ?>

C.3.5 Powershell Script to Execute the SQL Teardown

1 # James Devine ’ s Sen ior Thes i s

2 #

3 # teardown . ps1 − A power she l l s c r i p t to launch In t e rn e t

4 # Explorer to execute the SQL teardown s c r i p t

5 #

6

7

8 cd ”C:\Program F i l e s \ I n t e rn e t Explorer ”

9

10 #point i e to the teardown s c r i p t

11 . / i e x p l o r e . exe 1 0 . 0 . 0 . 2 0 / teardown . php

12

13 #s l e ep f o r one second

14 s l e ep 1

15

16 #k i l l i n t e r n e t exp l o r e r

17 get−proce s s i e x p l o r e | stop−proce s s

C.3.6 SQL Configuration File

1 <?php

2

3 $host=” 1 0 . 0 . 0 . 2 2 ” ;

4 $database=” t e s t ” ;

5 $user=” root ” ;

6 $password=” a l l egheny ” ;

7

8 ?>

90

C.4 JMeter Log File Reduction

C.4.1 JMeter Log File to CSV Converter

1 ”””

2 Descr ip t i on : S p l i t JTL f i l e i n t o a comma de l im i t e d CVS

3 by : O l i v e r Erlewein (c) 2008

4 Date : 04.02.2008

5 Lang : Python 2.4+

6

7 MODIFICATIONS:

8 James Devine − Modif ied the f u n c t i o n a l i t y o f the s c r i p t on

9 4−1−2010 to re turn only the time each

r e que s t

10 took to proces s

11

12 JMeter JTL f i e l d con ten t s :

13

14 At t r i b u t e & Content

15 by Bytes

16 de Data encoding

17 dt Data type

18 ec Error count (0 or 1 , un l e s s mu l t i p l e samples are aggrega ted)

19 hn Hostname where the sample was generated

20 l b Labe l

21 l t Latency = time to i n i t i a l response (m i l l i s e c ond s) − not a l l

samplers suppor t t h i s

22 na Number o f a c t i v e th reads f o r a l l thread groups

23 ng Number o f a c t i v e th reads in t h i s group

24 rc Response Code (e . g . 200)

25 rm Response Message (e . g . OK)

26 s Success f l a g (t rue / f a l s e)

91

27 sc Sample count (1 , un l e s s mu l t i p l e samples are aggrega ted)

28 t Elapsed time (m i l l i s e c ond s)

29 tn Thread Name

30 t s timeStamp (m i l l i s e c ond s s ince midnight Jan 1 , 1970 UTC)

31 ”””

32

33 import sys

34 import re

35 import datet ime

36 import time

37

38 startTime = time . time ()

39 cnt = 0

40 cnt2 = 0

41 f a i lCn t = 0

42 reCompile = re . compi le (”\ s ([ˆ\ s] ∗ ?) =\”(.∗?) \””)

43 de l imiterCharacterOut = ” , ”

44

45 def writeCSVLine (l i n e) :

46 x = reCompile . f i n d a l l (l i n e)

47 a = d i c t ((row [0] , row [1]) for row in x)

48 try :

49 a [’ t s ’] = s t r (i n t (i n t (a [’ t s ’]) /1000))

50 x = s t r (datet ime . datet ime . fromtimestamp (f l o a t (a [’ t s ’]))) [0 : 1 9]

51

52 #BEGIN MODIFICATIONS

53 b =a [’ t ’]+ ”\n”

54 #END MODIFIICATIONS

55

56 except :

57 return −1

58 o . wr i t e (b)

92

59 return 1

60

61 print ” Sp l i t t i n g JTL f i l e ”

62

63 try :

64 runArgv = sys . argv # Save the command l i n e

65 j t l I n f i l e = s t r (sys . argv [1]) # Name of JTL input f i l e

66 cv sOu t f i l e = s t r (sys . argv [2]) # Name of CVS output f i l e

67 r e F i l t e r = s t r (sys . argv [3]) # F i l t e r the l a b e l s (l b)

f o r the f i l t e r

68 except :

69 print ”Error : Input format : <input f i l e > <output f i l e > <F i l t e r by

r e gu l a r expres s ion>”

70 raise

71

72 try :

73 f = open (j t l I n f i l e , ” r ”)

74 o = open (cv sOut f i l e , ”w”)

75 except :

76 raise

77

78 print ” F i l t e r i n g on r e gu l a r exp r e s s i on : ” + r e F i l t e r

79 cmpFi lter = re . compi le (r e F i l t e r)

80

81 for l i n e in f :

82 try :

83 i f cmpFi lter . s earch (l i n e) :

84 returnVal = writeCSVLine (l i n e)

85 i f returnVal < 0 :

86 f a i lCn t += 1

87 else :

88 cnt2 += 1

93

89 except :

90 print ’ Error in l i n e : ’ , cnt , l i n e

91 raise

92

93 cnt += 1

94

95 endTime = time . time ()

96 print ”Time taken : ” , s t r (endTime−startTime)

97 print ”Lines proce s s ed : ” , cnt

98 print ”Lines that passed the f i l t e r : ” , cnt2

99 print ”Lines skipped (e r r o r ?) : ” , f a i lCn t

100

101 f . c l o s e ()

102 o . c l o s e ()

C.4.2 Script to Run the JMeter Converter

1 #!/ bin / bash

2 # James Devine ’ s Senior Thesis

3 # j t l t o c s v . sh − a bash s c r i p t t h a t t a k e s to parameters

4 a d i r e c t o r y and a d e l im i t e r

5 The s c r i p t s run program . py with

6 the g iven d e l im i t e r on each

7 f i l e in a d i r e c t o r y to produce

8 csv summary f i l e s

9

10

11 #ge t CWD

12 d i r=$ (pwd)

13

14 #ge t the d i r e c t o r y from a command l i n e arg

15 d i r e c t o r y=$1

94

16 d e l im i t e r=$2

17

18 cd $d i r e c t o r y

19

20 #ge t a l i s t o f the f i l e s in the d i r e c t o r y

21 FILES=”∗”

22

23 #loop through each f i l e

24 for f in ‘ l s ‘

25 do

26 f i l e=$ f

27 i f [$ f i l e !=” csv ”] ; then

28 python ” $d i r /program . py” ” $ f i l e ” ” $ f i l e . csv ”

” $d e l im i t e r ”

29 f i

30 done

C.5 R Code

C.5.1 Xenmon Output Processing

1 # James Devine ’ s Senior Thesis

2 # cpu time .R − an R s c r i p t to c a l c u l a t e the wait , cpu usage , and b l o c k

3 time o f a domain from xenmon log f i l e s

4

5 ca l cPercent=function (l o ca t i on , p r e f i x , domain)

6 {

7 #read each data f i l e i n t o a t a b l e

8

9 tab l e1 <− read . table (paste (l o ca t i on , p r e f i x , ”−1−dom” , domain , ” . l og

” , sep=””))

95

10 tab l e2 <− read . table (paste (l o ca t i on , p r e f i x , ”−2−dom” , domain , ” . l og

” , sep=””))

11 tab l e3 <− read . table (paste (l o ca t i on , p r e f i x , ”−3−dom” , domain , ” . l og

” , sep=””))

12 tab l e4 <− read . table (paste (l o ca t i on , p r e f i x , ”−4−dom” , domain , ” . l og

” , sep=””))

13 tab l e5 <− read . table (paste (l o ca t i on , p r e f i x , ”−5−dom” , domain , ” . l og

” , sep=””))

14

15 #ca l cua t e the average b l o c k time

16 block time=c (sum(tab l e1 [, 8]) ,sum(tab l e2 [, 8]) ,sum(tab l e3 [, 8]) ,sum

(tab l e4 [, 8]) ,sum(tab l e5 [, 8]))

17 block time avg=mean(b lock time)/4000000000

18

19 #ca l c u l a t e the average cpu u t a l i z a t i o n time

20 cpu time=c (sum(tab l e1 [, 4]) ,sum(tab l e2 [, 4]) ,sum(tab l e3 [, 4]) ,sum(

tab l e4 [, 4]) ,sum(tab l e5 [, 4]))

21 cpu time avg=mean(cpu time)/4000000000

22

23 #ca l c u l a t e the average wai t time

24 t=7200000000000

25 wait time=c (t−block time [1]− cpu time [1] , t−block time [2]− cpu time

[2] , t−block time [3]− cpu time [3] ,

26 t−block time [4]− cpu time [4] , t−block time [5]− cpu

time [5])

27 wait time avg=mean(wait time)/4000000000

28

29 #return a l i s t wi th the (b l o c k percent , cpu percent , wai t

percent)

30 return (c (b lock time avg/18 , cpu time avg/18 , wait time avg/18))

31 }

96

Bibliography

[1] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho,
Rolf Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the art of virtualiza-
tion. In Proceedings of the Nineteenth ACM Symposium on Operating Systems
Principles, pages 164–177, New York, NY, USA, 2003. ACM.

[2] Ludmila Cherkasova, Diwaker Gupta, and Amin Vahdat. Comparison of the
three CPU schedulers in Xen. Special Interest Group on Operating Systems
Operating Systems Review, 35(2):42–51, 2007.

[3] Bryan Clark, Tod Deshane, Eli Dow, Stephen Evanchik, Matthew Finlayson,
Jason Herne, and Jeanna Neefe Matthews. Xen and the art of repeated
research, 2004. Online at http://web2.clarkson.edu/class/cs644/
xen/papers.html.

[4] Intel Corporation. Moore’s law, 2010. Online at http://www.intel.com/
technology/mooreslaw/.

[5] Matthew DeDiana. An empirical performance evaluation of the xen sedf sched-
uler on multiple heterogeneous workloads. Allegheny College Senior Thesis CS08-
01, 2008.

[6] Jim Elliott. The evolution of IBM mainframes and vm, 2004. Online at http:
//www.linuxvm.org/Present/SHARE103/S9140jea.pdf.

[7] Apache Software Foundation. Apache jmeter, 2009. Online at http://
jakarta.apache.org/jmeter/index.html.

[8] Diwaker Gupta, Rob Gardner, and Ludmila Cherkasova. XenMon: QoS moni-
toring and performance profiling tool. 2005. Online at http://www.hpl.hp.
com/techreports/2005/HPL-2005-187.html.

[9] Microsoft. Exchange server 2003 performance tools, 2006. Online at http:
//technet.microsoft.com/en-us/library/aa996076(EXCHG.65)
.aspx.

[10] Xen Project. Xen architecture overview. Online at http:
//wiki.xensource.com/xenwiki/XenArchitecture?action=
AttachFile&do=get&target=Xen+Architecture_Q1+2008.pdf,
2008.

97

http://web2.clarkson.edu/class/cs644/xen/papers.html
http://web2.clarkson.edu/class/cs644/xen/papers.html
http://www.intel.com/technology/mooreslaw/
http://www.intel.com/technology/mooreslaw/
http://www.linuxvm.org/Present/SHARE103/S9140jea.pdf
http://www.linuxvm.org/Present/SHARE103/S9140jea.pdf
http://jakarta.apache.org/jmeter/index.html
http://jakarta.apache.org/jmeter/index.html
http://www.hpl.hp.com/techreports/2005/HPL-2005-187.html
http://www.hpl.hp.com/techreports/2005/HPL-2005-187.html
http://technet.microsoft.com/en-us/library/aa996076(EXCHG.65).aspx
http://technet.microsoft.com/en-us/library/aa996076(EXCHG.65).aspx
http://technet.microsoft.com/en-us/library/aa996076(EXCHG.65).aspx
http://wiki.xensource.com/xenwiki/XenArchitecture?action=AttachFile&do=get&target=Xen+Architecture_Q1+2008.pdf
http://wiki.xensource.com/xenwiki/XenArchitecture?action=AttachFile&do=get&target=Xen+Architecture_Q1+2008.pdf
http://wiki.xensource.com/xenwiki/XenArchitecture?action=AttachFile&do=get&target=Xen+Architecture_Q1+2008.pdf

[11] Rami Rosen. Introduction to the Xen virtual machine, 2005. Online at http:
//www.linuxjournal.com/article/8540.

[12] Andrew S. Tanenbaum. Modern Operating Systems. Pearson Education, Inc.,
3rd edition, 2009.

[13] Simon Tatham. Putty: A free telnet/ssh client, 2009. Online at http://www.
chiark.greenend.org.uk/˜sgtatham/putty/download.html.

[14] VMware, Inc. Vmware milestones, 2010. Online at http://www.vmware.
com/company/mediaresource/milestones.html.

[15] Xianghua Xu, Peipei Shan, Jian Wan, and Yucheng Jiang. Performance evalu-
ation of the CPU Scheduler in Xen. In Information Science and Engineering,
2008., volume 2, pages 68–72, Dec. 2008.

[16] Yaron. Credit-based cpu scheduler, 2007. Online at http://wiki.
xensource.com/xenwiki/CreditScheduler.

98

http://www.linuxjournal.com/article/8540
http://www.linuxjournal.com/article/8540
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
http://www.vmware.com/company/mediaresource/milestones.html
http://www.vmware.com/company/mediaresource/milestones.html
http://wiki.xensource.com/xenwiki/CreditScheduler
http://wiki.xensource.com/xenwiki/CreditScheduler

	Acknowledgments
	List of Tables
	List of Figures
	Overview
	Virtualization
	Definition
	Motivation
	History
	The Xen Open Source Hypervisor

	CPU Scheduling
	Measuring Performance
	Xen CPU Scheduling Algorithms
	The sEDF Scheduler
	The Credit Scheduler

	Scheduling Concerns

	Thesis Statement
	Contributions of Work
	Looking Ahead

	Related Work
	Xen and the Art of Virtualization
	Xen CPU Scheduling Research

	Virtual Machine Architecture
	Hardware
	Workloads
	Web Application
	VPS Application
	Windows Domain
	Active Directory
	Exchange
	SharePoint
	MSSQL

	Test Machine
	Network Overview

	Experiment Design
	Web Application Workload Experiment
	Application Design
	Running the Experiment

	VPS Workload Experiment
	Running the Experiment

	Windows Domain Workload Experiment
	Running the Experiments

	Results Analysis
	JMeter
	LoadGen
	Xenmon

	The Results: Analysis and Conclusions
	Introduction
	Web Application Results
	VPS Results
	Windows Domain Results
	Exchange Results
	MOSS Results

	A Review of Claims and Contributions
	Threats to Validity
	Conclusion

	Future Work
	Xen Commands
	Xen Installation
	Creating a VM
	Cloning a VM
	Increase the Number of Loopback Devices
	Set the Xen CPU Scheduler Type
	Determining the Scheduler Configuration
	Xentop
	Viewing the Running Virtual Machines

	Tools
	JMeter
	LoadGen
	Pageant
	Plink
	Ubuntu
	virt-manager
	Xenmon
	Xen

	Source Code
	Test Configuration Files
	Web Application JMeter Configuration File

	Test Scripts
	Web Application sEDF Tests Powershell Script
	Web Application Credit Tests Powershell Script

	Web Application Source Code
	Main Website
	SQL Setup Script
	Powershell Script to Execute the SQL Setup
	SQL Teardown Script
	Powershell Script to Execute the SQL Teardown
	SQL Configuration File

	JMeter Log File Reduction
	JMeter Log File to CSV Converter
	Script to Run the JMeter Converter

	R Code
	Xenmon Output Processing

	Bibliography

