
GPGPU Parallel Merge Sort Algorithm

Jim Kukunas and James Devine

May 4, 2009

Abstract

The increasingly high data throughput and computational power of today’s Graphics
Processing Units (GPUs), has led to the the development of General Purpose computa-
tion on the GPU (GPGPU). nVidia has created a unified GPGPU architecture, known
as CUDA, which can be utilized through language extensions to the C programming
language. This work seeks to explore CUDA through the implementation of a parallel
merge sort algorithm.

1 Introduction

GPGPU allows for the parallel execution of code on the GPU. The GPU is essentially used

as a co-processor to handle the execution of highly parallel code. There are very large per-

formance improvements that can be realized by outsourcing highly parallel computationally

intense tasks to the GPU.

Typically, Central Processing Units (CPUs) achieve computational parallelism through

the use of an out-of-order execution core, which typically contains only a few Arithmetic

Logic Units (ALUs). ALUs are co-processors dedicated to integer and floating point compu-

tations. For example, three out of the six ports within the execution core of the Intel Core

2 Duo are ALUs. This means that, assuming a full pipeline, three arithmetic computations

can execute at once. Graphical Processing Units (GPUs), unlike CPUs, are specialized for

intense floating point calculations, and thus contain many stream processors. Stream pro-

cessors are ALUs which specialize in a limited form of parallelism, similar to SIMD vertex

instructions, in which there exists a stream of data and a kernel function which is applied to

each element in the stream. These streams are ideal for intensive, highly specialized, parallel

floating point operations. The nVidia GTX 260, for example, contains 250 on-board stream

1

Figure 1: CUDA Architecture

processors. Compared with a CPU, the GPU has a much greater computation through-

put, and thus it is ideal to outsource heavy embarrassingly parallel computations onto the

GPU. This outsourcing onto the graphics card is known as General Purpose computation

on Graphics Processing Units (GPGPU).

Historically, GPGPU architectures were highly specific to certain graphics cards and

required the developer to write all GPGPU code in assembly language, assembled specifically

for the specific card in use, however with the increase in the number of stream processors,

the increase in the amount of on-board memory, and increased pipeline speeds, the demand

for GPGPU tools has increased and both nVidia and ATI have released unified GPGPU

architectures for their latest cards. nVidia’s architecture, CUDA, is a set of language

extensions to the C programming language. The CUDA architecture can be seen in figure

1.

2 Extended CUDA C

To allow for simple integration with existing applications, nVidia implemented their GPGPU

architecture through extensions to the C programming language. The nVidia CUDA com-

piler supports full ISO C++ for code running on the host, but for functions executed on

the device, only supports CUDA C.

2

Function Qualifiers

The CUDA extensions for C contain three types of function type qualifiers, __device,__global__

and __host__. The __device__ qualifier declares a function executed completely on the

GPU, and hence this function is the most restricted. These functions can not be derefer-

enced, can not be recursive, can not contain static variable declarations and can not take

a variable number of arguments. These functions can also only be called from the device.

Functions declared with the __global__ qualifier defines a kernel function, the function

which will be executed on each element in the stream of data. __global__ functions are

executed on the GPU, but are only callable from the host. They also must return void. The

third type of qualifier, __host__, declares a function which is executed on the host. These

functions are only callable from the host.Once a __host__ function has been declared, it

can be called using the following syntax:

FUNC <<< Dg,Db, Ns >>> (Parameters);

Here, Dg is a three-element tuple specifying the dimensions and size of the grid to be

launched. Db is also a three-element tuple specifying the dimension and size of each block.

Finally, Ns is of the type size_t, and represents the number of bytes in shared memory

that is dynamically allocated per block. The number of threads spawned per block can be

represented by[1]:

threadsperblock = Db.x ∗Db.y ∗Db.z

Variable Qualifiers

The CUDA extensions for C contain three types of variable qualifiers, __device__,__constant__,

and __shared__. Variables declared with the __device__ qualifier reside within the mem-

ory of the device. These variables are in the global memory space and have the lifetime of

the application. The __constant__ qualifier declares a variable similar to __device__, but

the value of which is constant. The third qualifier __shared__, declares a variable which is

accessible from all threads[1].

3

Learning About CUDA and GPGPU

The starting point for the project was to learn about GPGPU and CUDA. The Internet

severed as our best resource. We started with the wikipedia entry for general information

and then followed the links to more authoritative websites. These links can be found in the

References section.

Install the CUDA SDK and Driver

The CUDA SDK and drivers are available for free from nVidia’s CUDA ZONE website[2].

After downloading the software we first installed the CUDA drivers. The drivers replace

the video drivers that were installed to allow the CUDA extensions to run. Once the CUDA

drivers were installed the SDK installer was run. This installed the files required to write

code that uses the CUDA extensions. Along with the SDK a package of sample CUDA

programs were installed.

Integrate the CUDA SDK into Visual Studio 2008

After the CUDA driver is installed, it is necessary to set the environmental variables in

Visual Studio to allow proper integration. Inside of Visual Studio, you must set the bin,

include, lib and source paths to that of those installed by the driver and to that of those

installed by the SDK.Once that is completed, you must create a custom build rule to allow

for the CUDA application to be built by the NVCC compiler.

Porting an Iterative Merge Sort to the CUDA Architecture

Since CUDA does not support recursion, we had to implement an iterative version of merge

sort. After a few various attempts, we settled on an implementation we found at [4]. Using

existing CUDA examples and the CUDA Programming Guide[1], we created a host function

which was passed two input arrays, the first being a list of the numbers to be sorted and

the second was the destination array. Both of these arrays were first created and initialized

in host memory. Then, using cudaMalloc and cudaMemCpy, they were shuttled onto the

4

GPU’s dedicated memory.

Inside the host function, the merge function is called. The merge function is a

__device__ function which performs the actual merge sort algorithm on the GPU.

3 Challenges

The two main challenges involved in this project were setting up Visual Studio 2008 and

writing the algorithm. After several hours of work we were able to get Visual Studio to

build applications using the CUDA API. It was quite frustrating at the time, but after

the correct files were added to the Windows PATH variable programs began to compile

without any problems. Once we were able to use the API we were faced with the challenge

of learning CUDA and then coding the merge sort algorithm. One of the more difficult

tasks in writing the algorithm was deciding on how to convert the recursive merge sort into

an iterative one. After finding some sample C code for an iterative merge sort online we

were able to replicate it using the CUDA API.

4 Future Work

If more time were alloted for this project it would have been interesting to look at the speed

up gained by performing merge sort on the GPU. There is much further work that can

be done with GPGPU. The increasing speed and decreasing price of GPUs makes them a

promising platform for future research. Undoubtedly, better tools and easier extensions to

implement GPGPU are not far down the road.

5 Conclusion

The project was both fun and educational. We got a change to learn how to write parallel

code that runs on the GPU.

5

6 Appendix

Iterative Merge Sort

[4]

// This i s an i t e r a t i v e ve r s i on o f merge s o r t .

// I t merges pa i r s o f two consecu t i v e l i s t s one a f t e r another .

// Af ter scanning the whole array to do the above job ,

// i t goes to the next s t a g e . Var iab l e k c on t r o l s the s i z e

// o f l i s t s to be merged . k doub l e s each time the main loop

// i s executed .

#include <s t d i o . h>

#include <math . h>

int i , n , t , k ;

int a [1 0 0 0 0 0] , b [1 0 0 0 0 0] ;

int merge (l , r , u)

int l , r , u ;

{ int i , j , k ;

i=l ; j=r ; k=l ;

while (i<r && j<u) {

i f (a [i]<=a [j]) {b [k]=a [i] ; i ++;}

else {b [k]=a [j] ; j ++;}

k++;

}

while (i<r) {

b [k]=a [i] ; i ++; k++;

}

while (j<u) {

b [k]=a [j] ; j ++; k++;

}

for (k=l ; k<u ; k++) {

a [k]=b [k] ;

}

}

6

s o r t ()

{ int k , u ;

k=1;

while (k<n) {

i =1;

while (i+k<=n) {

u=i+k ∗2 ;

i f (u>n) u=n+1;

merge (i , i+k , u) ;

i=i+k ∗2 ;

}

k=k ∗2 ;

}

}

main ()

{ p r i n t f ("input size \n") ;

s can f ("%d" ,&n) ;

/∗ f o r (i =1; i<=n ; i++) scan f (”%d”,&a [i]) ; ∗/

for (i =1; i<=n ; i++) a [i]=random ()%1000;

t=c l o ck () ;

s o r t () ;

for (i =1; i <=10; i++) p r i n t f ("%d " , a [i]) ;

p r i n t f ("\n") ;

p r i n t f ("time= %d millisec\n" , (c l o ck ()− t) /1 000) ;

}

GPGPU Merge Sort Kernel

/∗

∗ merge kerne l . cu

∗

∗ merge s o r t Implementation run in p a r a l l e l t h reads

∗ on the GPU through the nVidia CUDA Framework

∗

7

∗ Jim Kukunas and James Devine

∗

∗/

#ifndef MERGE KERNEL CU

#define MERGE KERNEL CU

#define NUM 64

d e v i c e inl ine

void Merge (int∗ values , int∗ r e s u l t s , int l , int r , int u)

{

int i , j , k ;

i=l ; j=r ; k=l ;

while (i<r && j<u) {

i f (va lue s [i]<=va lues [j]) { r e s u l t s [k]= va lue s [i] ; i ++;}

else { r e s u l t s [k]= va lue s [j] ; j ++;}

k++;

}

while (i<r) {

r e s u l t s [k]= va lue s [i] ; i ++; k++;

}

while (j<u) {

r e s u l t s [k]= va lue s [j] ; j ++; k++;

}

for (k=l ; k<u ; k++) {

va lue s [k]= r e s u l t s [k] ;

}

}

8

g l o b a l stat ic void MergeSort (int ∗ values , int∗ r e s u l t s)

{

extern s h a r e d int shared [] ;

const unsigned int t i d = threadIdx . x ;

int k , u , i ;

// Copy input to shared mem.

shared [t i d] = va lue s [t i d] ;

s ync th r ead s () ;

k = 1 ;

while (k < NUM)

{

i = 1 ;

while (i+k <=NUM)

{

u = i+k ∗2 ;

i f (u > NUM)

{

u = NUM+1;

}

Merge (shared , r e s u l t s , i , i+k , u) ;

i = i+k ∗2 ;

}

k = k ∗2 ;

s ync th r ead s () ;

}

va lue s [t i d] = shared [t i d] ;

}

9

#endif

GPGPU Merge Sort Driver Application

/∗

∗ merge . cu

∗

∗ Tests the merge s o r t Implementation run in p a r a l l e l t h reads

∗ on the GPU through the nVidia CUDA Framework

∗

∗ Jim Kukunas and James Devine

∗

∗/

#include <s t d i o . h>

#include <s t d l i b . h>

#include < c u t i l i n l i n e . h>

#include "merge_kernel.cu"

int main (int argc , char∗∗ argv)

{

i f (cutCheckCmdLineFlag (argc , (const char∗∗) argv , "device"))

c u t i l D e v i c e I n i t (argc , argv) ;

else

cudaSetDevice (cutGetMaxGflopsDeviceId ()) ;

int va lue s [NUM] ;

/∗ i n i t i a l i z e a random da ta s e t ∗/

for (int i = 0 ; i < NUM; i++)

{

va lue s [i] = rand () ;

}

10

int∗ dvalues ,

∗ r e s u l t s ;

c u t i l S a f e C a l l (cudaMalloc ((void∗∗)& dvalues , s izeof (int) ∗ NUM)) ;

c u t i l S a f e C a l l (cudaMemcpy(dvalues , va lues , s izeof (int) ∗ NUM, cudaMemcpyHostToDevice)) ;

c u t i l S a f e C a l l (cudaMalloc ((void∗∗)& r e s u l t s , s izeof (int) ∗ NUM)) ;

c u t i l S a f e C a l l (cudaMemcpy(r e s u l t s , va lue s , s izeof (int)∗ NUM, cudaMemcpyHostToDevice)) ;

MergeSort<<<1, NUM, s izeof (int) ∗ NUM∗2>>>(dvalues , r e s u l t s) ;

// check f o r any e r ro r s

cuti lCheckMsg ("Kernel execution failed") ;

c u t i l S a f e C a l l (cudaFree (dva lues)) ;

c u t i l S a f e C a l l (cudaMemcpy(values , r e s u l t s , s izeof (int)∗NUM, cudaMemcpyDeviceToHost)) ;

c u t i l S a f e C a l l (cudaFree (r e s u l t s)) ;

bool passed = true ;

for (int i = 1 ; i < NUM; i++)

{

i f (va lue s [i −1] > va lue s [i])

{

passed = fa l se ;

}

}

p r i n t f ("Test %s\n" , passed ? "PASSED" : "FAILED") ;

cudaThreadExit () ;

c u t i l E x i t (argc , argv) ;

}

11

References

[1] NVIDIA Corporation. Nvidia cuda programming guide. NVIDIA, 2008.
http://developer.download.nvidia.com/compute/cuda/2_1/toolkit/docs/
NVIDIA_CUDA_Programming_Guide_2.1.pdf

[2] NVIDIA Corporation. Cuda zone. NVIDIA, 2009. http://www.nvidia.com/object/
cuda_home.html

[3] Mark Harris. General-purpose computation on graphics hardware. GPGPU.org, 2009.
http://gpgpu.org

[4] Tadao Takaok. Iterative merge sort. http://www.cosc.canterbury.ac.nz/tad.
takaoka/cosc229/imerge.c

12

http://developer.download.nvidia.com/compute/cuda/2_1/toolkit/docs/NVIDIA_CUDA_Programming_Guide_2.1.pdf
http://developer.download.nvidia.com/compute/cuda/2_1/toolkit/docs/NVIDIA_CUDA_Programming_Guide_2.1.pdf
http://www.nvidia.com/object/cuda_home.html
http://www.nvidia.com/object/cuda_home.html
http://gpgpu.org
http://www.cosc.canterbury.ac.nz/tad.takaoka/cosc229/imerge.c
http://www.cosc.canterbury.ac.nz/tad.takaoka/cosc229/imerge.c

	Introduction
	Extended CUDA C
	Function Qualifiers
	Variable Qualifiers
	Learning About CUDA and GPGPU
	Install the CUDA SDK and Driver
	Integrate the CUDA SDK into Visual Studio 2008
	Porting an Iterative Merge Sort to the CUDA Architecture

	Challenges
	Future Work
	Conclusion
	Appendix
	Iterative Merge Sort
	GPGPU Merge Sort Kernel
	GPGPU Merge Sort Driver Application

