
CS380 Final Project
Evaluating the Scalability of Hadoop in a Real

and Virtual Environment

James Devine

December 15, 2008

Abstract

Mapreduce has been a very successful computational technique that has greatly
helped Google grow. While Google does not release their source code, there are
projects such as Hadoop that allow anyone to implement a MapReduce system.
The power of mapreduce lies in its ability to break up a very computationally in-
tense task into a number of much small pieces that can be worked on by computers
in a cluster. This paper seeks to provide background on Hadoop and outlines the
process of getting a Hadoop Cluster running. It then presents the results of an
empirical study conducted on the scalability of Hadoop in a real and virtual envi-
ronment.

1 What is Hadoop
Hadoop is an open source Java based distributed file system (dfs) with built in support
for MapReduce. The distributed file system is referred to as the Hadoop Distributed
File System (HDFS).[?]

1.1 How it works
The Hadoop dfs service stores files on the local hard disk of each node of the cluster.
The HDFS capacity is equal to the sum of the free space on all nodes of the cluster.
The default configuration provides three way replication so each file created is stored
on three separate nodes. The MapReduce service runs ontop of the HDFS. A user sub-
mits a program and input to Hadoop to be processed. Hadoop then, using MapReduce,
runs the program on the specified input. The MapReduce process is broken into two
parts- map and reduce.

During the map process the input file(s) are split up into many smaller pieces. Each
piece is sent to a node in the cluster to be computed. The map process creates (key,
value) pairs and then uses a mapper task. The mapper task is written in the program
that is being run and specifies what should be done to the (key, value) pairs. A combine

1

2 HADOOP SETUP 2

function can be specified by the program as part of of the map process to decrease the
amount of output by combining (key, value) pairs. The reduce process collects all of
the solutions from each of the nodes in the cluster are combines it into one file.[?]

1.2 Getting Hadoop
Hadoop can be downloaded from http://hadoop.apache.org/core/releases.html.

2 Hadoop Setup
The following sections outline the steps required to get a Hadoop Cluster Up and Run-
ning. [?]

2.1 Prerequisites
• Java 1.6

• JAVA HOME Environment Variable set to the java installation location

• SSHD

• SSH

• SSH key generated for each machine in the cluster

Generating an SSH key for each machine on the cluster is an important step. The
scripts to start Hadoop will need to be able to log into the other machines in the cluster
without entering a password. This can be done with the following command:

ssh-keygen -t rsa -P ""
cat $HOME/.ssh/id_rsa.pub >> $HOME/.ssh/authorized_keys

After running the commands above, each machine in the cluster should be connected
to with ssh.

The JAVE HOME environment variable can be set using the a setenv statement in the
.cshrc file (under a user’s home directory) if using a C shell.

setenv JAVA_HOME=location_of_java

2.2 Extracting the Software
Once the Hadoop software has been downloaded it needs to be extracted to a directory
on the local hard drive. Then a temporary directory needs to be created so Hadoop has
a place to store the distributed files. In this example the folder tmp was created in the
Hadoop installation directory.

2 HADOOP SETUP 3

2.3 Configuring Hadoop
The main settings for Hadoop reside in the hadoop-site.xml file under the conf direc-
tory. Initially the file is empty and needs to be configured. There are many values that
can be specified, if a specific value is not specified the default value is used (the default
values reside in the hadoop-default.xml file in the conf directory). The hadoop.tmp.dir
parameter specifies the temporty directory that Hadoop uses to save dfs files. The
fs.default.name parameter is set to the address of the master server in the cluster that is
running the NameNode service. The mapred.job.tracker parameter is set to the server
that is running the JobTracker service. The dfs.block.size parameter specifies the block
size that the HDFS uses for file storage. The following is the configuration file from
this experiment.

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>

<!-- Put site-specific property overrides in this file. -->

<configuration>
<property>

<name>hadoop.tmp.dir</name>
<value>/opt/devinej/hadoop/tmp/\${user.name}</value>
<description>A base for other temporary directories.</description>

</property>

<property>
<name>fs.default.name</name>
<value>hdfs://aldenv167:54310</value>
<description>The name of the default file system. A URI whose
scheme and authority determine the FileSystem implementation. The
uri’s scheme determines the config property (fs.SCHEME.impl) naming
the FileSystem implementation class. The uri’s authority is used to
determine the host, port, etc. for a filesystem.</description>

</property>

<property>
<name>mapred.job.tracker</name>
<value>aldenv167:54311</value>
<description>The host and port that the MapReduce job tracker runs
at. If "local", then jobs are run in-process as a single map
and reduce task.
</description>

</property>

<property>
<name>dfs.replication</name>
<value>2</value>

2 HADOOP SETUP 4

<description>Default block replication.
The actual number of replications can be specified when the file is created.
The default is used if replication is not specified in create time.
</description>

</property>

<property>
<name>dfs.block.size</name>
<value>2097152</value>
<description>Sets the block size to 2 MB since most of the files used in
the empirical study are between 250KB-2MB
</description>

</property>
</configuration>

After editing the hadoop-site.xml file, the masters and slaves files need to be edit.
Each file resides in the conf folder. The masters file contains a list of master server ip
address or host names. This is usually just set to one machine for simple installations;
the best machine for this would be the machine that is set up with Hadoop first. The
slaves files is edited next. The slaves file should contain the host name or ip address of
each machine that will run Hadoop. An example slaves file is provided below.

141.195.226.167
141.195.226.168
141.195.226.169
141.195.226.170
141.195.226.171
141.195.226.172
141.195.226.173
141.195.226.174

2.4 Deploying the Hadoop Installation to the Servers in the Cluster
The installation directory needs to be copied to each of the other servers in the cluster.
This can be easily done by using the scp command. A sample of the command is given
below. This will copy all of the installation and configuration files to the specified
remote machine.

scp -r /hadoop_install_directory remote_computer:/hadoop_install_directory

Through the course of the experimentation it was necessary to write a short script to
deploy the hadoop config files to all the computer in the cluster. It could very easily by
modified to deploy the entire Hadoop install folder. The script can be found below.

#!/bin/sh

install_dir=/opt/devinej/hadoop

2 HADOOP SETUP 5

#Copy the configuration files to each of the machines in the cluster
for((i =167; i<=174; i++))
do
scp $install_dir/conf/masters aldenv$i:$install_dir/conf
scp $install_dir/conf/slaves aldenv$i:$install_dir/conf
scp $install_dir/conf/hadoop-site.xml aldenv$i:/$install_dir/conf
done

2.5 Formatting the Namenode
On the master server the namenode must be formated before the first run of Hadoop.
Formatting the namenode prepares the temp folder specified in the config file for stor-
ing data as part of the HDFS. If there is already data in the HDFS it will be erased. The
command below is a sample on how to format the namenode.

install_dir/bin/hadoop dfs namenode -format

2.6 Starting the DFS Service
The DFS service is the main distributed file system service. The script starts the dfs
service on each server in the cluster; it resides in bin directory and is called start-dfs.sh.
The script will reads in the list of servers from the slaves file in the conf directory. The
following command demonstrates the execution of the services.

hadoop_install_directory/bin/start-dfs.sh

Once the dfs service is started, typing the jps command on each slave server in the clus-
ter should show DataNode. On the master server typing in jps should show DataNode,
NameNode, and SecondaryNameNode. This indicates that the dfs service is running
correctly.

2.7 Starting the MapReduce Service
The MapReduce service supports the use of MapReduce. The script to execute the
service on each node in the cluster is called start-mapred.sh and resides in the bin
directory. The command to execute the command is shown below.

hadoop_install_directory/bin/start-mapred.sh

Once the mapred service, typing the jps command on each slave server in the cluster
should show TaskTaracker (in addition to DataNode). On the master server typing in
jps should show JobTracker, (in addition to DataNode, NameNode, and SecondaryNa-
meNode). This indicates that the MapReduce Service is correctly running. Note that to
properly use Hadoop the mapred service must be running.

3 RUNNING HADOOP IN A VIRTUAL ENVIRONMENT 6

2.8 Accessing the HDFS
The HDFS can be accessed though the hadoop executable. A variety of typical Linux
comands can be passed. The HDFS can also be accessed through the web interface at
http://master_node:50070. A sample HDFS command is given below that will list
everything in the top directory of the HDFS.

install_dir/bin/hadoop dfs -ls

2.9 Sending a MapReduce Job to Cluster
The hadoop executable allows for MapReduce job to be sent to the cluster. The syntax
is provided below. The status of the job can be viewed at http://master_node:
50030

install_dir/bin/hadoop jar program.jar org.myorg.ProgramName /input /output

3 Running Hadoop In a Virtual Environment
Hadoop was set up on a cluster of virtual machines in VMware Workstation. The
computer had 8 GB of RAM with a Q6700 Core 2 Quad Core processor and was
running Windows Vista.

3.1 Virtual Machine Configuration

Table 1: Configuration of each virtual machine
Operating System Ubuntu Server 8.10

Processor 2.6 GHz
RAM 512 MB

Hard Drive 10 GB

3.2 Setting up the Environment
To create the virtual environment a Ubuntu Server 8.10 virtual machine was set up
and Hadoop was installed. The virtual machine was then cloned 7 times to create the
remaining machines in the environment.

4 Running Hadoop In a Real Environment
This section outlines how Hadoop was run in a real environment.

5 CREATING A PERFORMANCE METRIC FOR MEASURING THE SCALABILITY HADOOP7

4.1 Real Machine Configuration
.

Table 2: Configuration of each real machines
Operating System Fedora 8

Processor Pentium 4 1.7 GHz
RAM 1 GB

Hard Drive 40 GB

4.2 Setting up the Environment
To begin setting up the environment a local directory was created on 8 machines in
the lab by the Systems Administrator. There was initially an issue with the network
configuration and a conflict arising from the iptables that had to be resolved. After the
issue was resolved the configuration files were written and deployed to each machine
in the cluster using the methodology outlined in the previous section.

5 Creating a Performance Metric for Measuring the
Scalability Hadoop

Hadoop’s example MapReduce Java program was used to measure the performance of
each cluster. The wordcount program counts the occurrence of each word in the input.
To create a dataset for the wordcount program to use, 438 ebooks totaling 289MB
were randomly download from Project Gutenberg. The main metric used to judge
performance was the time it took each cluster size to run wordcount on the collection
of ebooks.

5.1 Building the Wordcount Sample Program
The WordCount.java files was downloaded from Hadoop’s website. It was then packed
into a jar file. The commands are shown below.[?]

mkdir wordcount_classes
javac -classpath install_dir/hadoop-0.10.9-core.jar -d wordcount_classes WordCount.java
jar -cvf /install_dir/wordcount.jar -C wordcount_classes/

5.2 Running the Experiment
To run the experiment a script was written that ran wordcount 5 times and saved the
output to a file. It then decreased the size of the cluster by one, formatted the namenode,
and then copied the ebooks into the HDFS. The script was set to start out with a cluster
of 8 nodes and run until it had reduced the cluster size to 2 nodes.

5 CREATING A PERFORMANCE METRIC FOR MEASURING THE SCALABILITY HADOOP8

#!/bin/bash
install_dir=/opt/devinej/hadoop

for((i =7; i>2; i--))
do
for((j=5; j>0;j--))
do
#run the mapred and save contents to a file
$install_dir/bin/hadoop jar $install_dir/wordcount.jar org.myorg.WordCount
/ebooks /out$j &> $install_dir/output/$i"real-"$j".txt"

#copy result to the hdd
$install_dir/bin/hadoop dfs "-copyToLocal" /out$j /$install_dir/output/$i"real-"$j

done

#take a node out of the cluster and restart cluster
$install_dir/remove_data.sh
done

The script relies on another script that is called remove data.sh that stops the Hadoop
services on all the machines in the cluster, removes a machine from the cluster, formats
the name node, and then brings the cluster back online. The script is provided below.

#!/bin/bash

install_dir=/opt/devinej/hadoop

"$install_dir/bin/stop-all.sh"

#remove the last entry from the slaves file
sed -n ’$! {p}’ < $install_dir/conf/slaves | cat > $install_dir/conf/slaves

#deploy the conf files
$install_dir/deploy_conf.sh

#Remove the local hadoop file from each node
for((i =167; i<=174; i++))
do
ssh aldenv$i "rm -r $install_dir/tmp/devinej"
done

#format the namenode
$install_dir/bin/hadoop namenode -format

#start the dfs and mapred services

6 THE SCALABILITY OF HADOOP 9

"$install_dir/bin/start-all.sh"
$install_dir/bin/hadoop dfs -copyFromLocal \$install_dir/ebooks /ebooks

6 The Scalability of Hadoop
The results from the experiment showed that adding more nodes to the cluster greatly
decreased the time required to run the wordcount program in both the virtual and real
environments. The graph of the real and virtual runtime both begin to show signs of
diminishing returns. This suggests that at some point adding more nodes to the cluster
will not improve the runtime. In the context of what Hadoop was designed for, the clus-
ters and data set used in the experiment are both considered small. Hadoop was built
to handle much larger data sets running on clusters with many more nodes. Given the
relatively under power of the machines used in the real cluster the results were fairly
significant. Using 8 nodes to run the wordcount program nearly reduced the runtime
by 75% when compared to using 2 nodes. Assuming that this trend could be achieved
in other MapReduce programs, a job that would take a month to compute on a single
machine could be executed in about week on the cluster thart was configured. The addi-
tions of more machines in the cluster could lead to an even greater reduction in runtime.

The curve for the virtual clusters has an interesting shape. The results showed that
as the cluster size increased the runtime continued to decrease. However the results of
diminishing returns can be clearly seen as a result of the unavailability of free resources.
Running 8 virtual machines put a considerable load on the host computer running the
virtualization software and pushed the CPU utilization to 100%. Perhaps the most
interesting results from the study was that adding more virtual machines decreased
the time required to run wordcount on the data set. This indicates that the use of
virtualization helped better utilize the resources of the host computer.

6 THE SCALABILITY OF HADOOP 10

11:31

14:24

17:17

20:10

un
t (
m
in
ut
es
)

Runtime of Wordcount With Increasing Cluster Sizes

00:00

02:53

05:46

08:38

2 3 4 5 6 7 8

Ru
nt
im

e
of
 W

or
dc
ou

Number of Nodes in the Cluster

Real Cluster

Virtual Cluster

Table 3: Results from Running Wordcount On Various Cluster Sizes
Number of Nodes Real Cluster Runtime Virtual Cluster Runtime

2 0:18:52 0:12:22
3 0:12:46 0:09:48
4 0:09:47 0:06:08
5 0:08:02 0:06:03
6 0:06:52 0:05:44
7 0:06:05 0:05:31
8 0:05:21 0:05:33

7 FUTURE RESEARCH 11

7 Future Research
There is much future research that could come out of this project. The potential re-
search can be broken up into two main areas, that of experimentation and exploration.

In the area of experimentation a more comprehensive performance study could be done.
There are many parameters in Hadoop that can be customized that could potentially
increase the performance of the MapReduce process. Experiments could also be con-
ducted with larger clusters and more demanding MapReduce tasks that require much
larger data sets.

In the area of exploration a more in depth study of MapReduce could be conducted.
This could involve writing programs that make use of the MapReduce process that
Hadoop provides. An attempt to make an ”efficient” solution to an NP-complete prob-
lem would be an intersting application. Another area of exploration could involve
setting up a permanent cluster in Alden Hall.

References
[1] The Apache Software Foundation. Hadoop. http://hadoop.apache.org. 2008.

[2] The Apache Software Foundation. Hadoop. http://hadoop.apache.org/core/
docs/r0.19.0/mapred_tutorial.html. 2008.

[3] Kurdyumov, Andrey. HadoopMapReduce. http://wiki.apache.org/hadoop/
HadoopMapReduce. 2008.

[4] Noll, Michael G. Running Hadoop On Ubuntu Linux (Multi-Node Cluster).
http://www.michael-noll.com/wiki/Running_Hadoop_On_Ubuntu_Linux_
(Multi-Node_Cluster). 2008.

